Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Fig. S1 The structural formulas of the studied A) Ac-H¹WKGPLR-NH₂ (L1) B) Ac-EH²KA-NH₂ (L2) and C) Ac-KEH³K-NH₂ (L3) ligands in a fully protonated form.

Fig. S2 CD spectra of the Cu(II)-Ac-**H**¹WKGPLR-NH₂ (**CuL1**) system in the Vis region as a function of pH. Cu:L=1:1, [Cu(II)]=0.001M.

Fig. S3 ESI mass spectrum of the **CuL1** complex (Cu:L=1:1) in aqueous solution (pH ~ 7). As an insert experimental and simulated spectrum of the $[CuL]^{2+}$ ion (*m*/*z*=498.7 Da) are shown.

Fig. S4 Species distribution diagram of Cu(II) bis-complexes with A) Ac-EH²KA-NH₂ (L2) and B) Ac-KEH³K-NH₂ (L3) ligands as a function of pH. Molar ratio Cu:L=1:2, [Cu(II)]=0.001 M.

Fig. S5 Electronic absorption spectra of the Cu(II)-Ac-KE**H**³K-NH₂ (**CuL3**) complex as a function of pH. Cu:L=1:1, [Cu(II)]=0.001 M.

Fig. S6 EPR spectra of a frozen solution of A) Cu(II)-Ac-E**H**²KA-NH₂ (**CuL2**) and B) Cu(II)-Ac-KE**H**³K-NH₂ (**CuL3**) complexes at various pH values. Cu:L=1:1, [Cu(II)]=0.001 M.

Fig. S7 CD spectra of A) Cu(II)-Ac-E**H**²KA-NH₂ (**CuL2**) and B) Cu(II)-Ac-KE**H**³K-NH₂ (**CuL3**) complexes in the Vis region as a function of pH. Cu:L=1:1, [Cu(II)]=0.001 M.

Fig. S8 Schematic representation of the proposed bis-complexes structures: A) CuH₂L₂, B) CuL₂ of the **CuL2** complex and C) CuH₄L₂ of the **CuL3** complex.

Fig. S9 ESI mass spectrum of the **CuL3** complex (Cu:L=1:2) in aqueous solution (pH ~ 7). As an insert experimental and simulated spectra of the $[CuH_{-1}L_2]^+$ ion (m/z = 1224.6 Da) are shown.

Peptide	pK1(amide)	pK2(amide)	pK3(amide) Of pKH2Ocoord.	
H ¹				
Ac-H ¹ WKGPLR-NH ₂ (L1)	6.42	6.66	7.33	
Ac-H ¹ GGG ^a	6.60	6.96	8.92	
Ac- H ¹ GGGWGQ-NH ₂ ^b	6.49	6.19	8.98	
H^2				
Ac-EH ² KA-NH ₂ (L2)	-	-	7.83	
Ac-GH ² GG ^a	6.11	6.12	10.76	
Ac-PH ² SFN ^c	6.48	6.62	8.38	
Ac-PH ² SRN ^c	6.66	6.44	8.93	
\mathbf{H}^3				
Ac-KEH ³ K-NH ₂ (L3)	-	-	7.38	
Ac-GGH ³ G ^a	6.05	6.43	8.95	
Ac-LAH ³ YNK ^d	5.75	-	9.04	
Ac-GGH ^{3e}	6.50	7.35	9.25	
Ac-YIH ^{3f}	6.99	7.34	8.92	
Ac-GTH ³ S-NH ₂ ^g	6.08	6.08	7.97	
Ac-FKH ³ V-NH ₂ ^g	5.93	5.93	8.52	
Ac-MKH ³ M-NH ₂ ^g	5.64	5.64	8.96	
Ac-KGH ³ GNG-NH ₂ ^h	5.56	6.06	8.90	
Ac-SKH ³ M-NH ₂ ⁱ	-	-	7.75	
^a ref. [28] ^b ref. [45] ^c ref. [46] ^d ref. [47] ^e ref. [48] ^f ref. [49] ^g ref. [50] ^h ref. [44] ⁱ ref [58]				

Table S1 The deprotonation constants for amide protons (pK_a values) for Cu(II) complexes with studied ligands and peptides found in the literature.

I ADIE 5 2 THE CALCULATED TOPA VALUES OF CULLET DIS-COMPLEXES WITH L2 AND L3 DEDUDES

^a log <i>K</i> [*]	2N	4N		
	$\{2N_{Im}\}$	$\{2N_{Im}, 2N^{-}\}$		
Ac-EH ² KA-NH ₂ (L2)	-5.67	-19.65		
$Ac-KEH^{3}K-NH_{2} (L3)$	-5.66	-		
^a The $\log K^* = \log \beta(CuH_jL_2) - \log \beta(H_nL)$ where the <i>j</i> corresponds to the number of protons in the coordinated ligand to metal ion and the <i>n</i> correspond to the number protons of the coordinated ligand and released from ligand during complexation.				