Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information (ESI)

Synthesis and Characterization of Sb_2O_3 : a Stable Electrocatalyst for Efficient H_2O_2 Production and Accumulation and Effective Degradation of Dyes

Ya Wang^a, Xin Lian^b, Yun Zhou^a, Wenlong Guo^{a,*}, Huichao He^{c,*}

^aChongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China

^bCollege of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, PR China

^cState Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China

*E-mail: guowenlong1989@163.com (WL Guo); <u>hehuichao@swust.edu.cn</u> (HC He)

Figure S1. (a) UV-vis absorption spectra of the $KMnO_4$ solution with various concentrations. (b) Linear relationship between absorbance at 525 nm and the concentration of $KMnO_4$.

Figure S2. Linear sweep voltammetry curves of the Sb_2O_3 films tested in KHCO₃ solution with different concentrations. The scan rate is 25 mV/s.

Figure S3. (a) UV-vis absorption spectra of the methylene blue solution with various concentrations. (b) Linear relationship between absorbance at 664 nm and the concentration of methylene blue.

Figure S4. (a) UV-vis absorption spectra of the rhodamine B solution with various concentrations. (b) Linear relationship between absorbance at 554 nm and the concentration of rhodamine B.

Figure S5. Current-time curves of the Sb_2O_3 film at 3.08 V vs RHE tested in 0.2 M Na₂SO₄ aqueous solution (a) containing 10 mg/L methylene blue and (b) 7.5 mg/L rhodamine B respectively. The insets show the color change of the solution before and after the reaction.

Figure S6. Linear sweep voltammetry curves of the Sb_2O_3 films before and after the chronoamperometry test for the degradation of (a) methylene blue and (b) rhodamine B respectively. The degradation experiments are conducted at 3.08 V vs RHE in 2 M KHCO₃ aqueous solution containing 10 mg/L methylene blue and 7.5 mg/L rhodamine B respectively.

Figure S7. (a) Repeated chronoamperometry tests of Sb_2O_3 films for 8 hours at 3.08 V vs RHE. The electrolyte is 2 M KHCO₃ aqueous solution (30 mL) with an ice bath (5 °C) and the reaction area is 3 cm². (b) Accumulated H₂O₂ concentrations of different reaction times.

Figure S8. XRD patterns of the Sb_2O_3 film before and after the chronoamperometry test for 3 hours at 3.08 V vs RHE in 2 M KHCO₃ aqueous solution.

Figure S9. XPS spectra of Sb 3d collected from the Sb_2O_3 film after 8 hours chronoamperometry test at 3.08 V vs RHE in 2 M KHCO₃ aqueous solution.

Catalyst	Production rate (µmol cm ⁻² min ⁻¹)	FE (%)	Electrolyte	Reaction time	Potential (vs RHE)	Ref.
WO ₃	~0.24	~46	1 M NaHCO ₃	10 min	~2.3 V	[1]
SnO_2	~1.25	~50	1 M NaHCO ₃	10 min	~3.1 V	[1]
TiO ₂	~0.75	~18	1 M NaHCO ₃	10 min	~3.3 V	[1]
BiVO ₄	~5.40	~70	1 M NaHCO ₃	10 min	~3.1 V	[1]
BiVO ₄ (seed)	0.63 mM/cm ²	11.4	1 M KHCO ₃	15 min	3.08 V	[2]
BiVO ₄ (nanoneedles)	0.4 mM/cm ²	12.7	1 M KHCO ₃	15 min	3.08 V	[2]
BiVO ₄ (truncated)	0.24 mM/cm ²	13.3	1 M KHCO ₃	15 min	3.08 V	[2]
(10ī0)ZnO	/	~75	2 M KHCO ₃	20 min	3.0 V	[3]
(0001)ZnO	/	~60	2 M KHCO ₃	20 min	3.0 V	[3]
CaSnO ₃	~4.25	76	2 M KHCO ₃	10 min	3.2 V	[4]
C,N codoped TiO ₂	0.29 μmol L ⁻¹ cm ⁻² h ⁻¹	8	0.05 M Na ₂ SO ₄	/	2.9 V vs Ag/AgCl	[5]
6% Gd:BiVO ₄	~2.7	~70	2 M KHCO ₃	10 min	3.0 V	[6]
Bi ₂ WO ₆ :5%Mo	~4.8	~79	2 M KHCO ₃	/	3.2 V	[7]
Sb ₂ O ₃	~0.26	~21.5	2 M KHCO ₃	5 min	3.08 V	This work

Table S1. Comparisons of the H_2O_2 production rate and FE between Sb_2O_3 and those reported electrocatalysts in literature.

References

1. Shi XJ, Siahrostami S, Li GL, Zhang YR, Chakthranont P, et al. Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide, Nat. Commu. 2020; 8: 701.

2. Nadar A, Gupta SS, Kar Y, Shetty S, van Bavel AP, et al. Evaluating the reactivity of $BiVO_4$ surfaces for efficient electrocatalytic H_2O_2 production: a combined experimental and computational study. J. Phys. Chem. C 2020; 124: 4152–61.

3. Kelly SR, Shi XJ, Back S, Vallez L, Park SY, et al. ZnO as an active and selective catalyst for electrochemical water oxidation to hydrogen peroxide. ACS Catal. 2019; 9: 4593–99.

4. Park SY, Abroshan H, Shi XJ, Jung HS, Siahrostami S, et al. CaSnO₃: an electrocatalyst for two-electron water oxidation reaction to form H_2O_2 . ACS Energy Lett. 2019; 4: 352–57.

5. Xue SG, Tang L, Tang YK, Li CX, Li ML, et al. Selective electrocatalytic water oxidation to produce H_2O_2 using a C, N codoped TiO₂ electrode in an acidic electrolyte. ACS Appl. Mater. Interfaces 2020; 12: 4423–31.

6. Baek JH, Gill TM, Abroshan H, Park S, Shi XJ, et al. Selective and efficient Gddoped BiVO₄ photoanode for two-electron water oxidation to H_2O_2 . ACS Energy Lett. 2019; 4: 720–8.

7. Li LJ, Hu ZF, Yu JC. On-demand synthesis of H_2O_2 by water oxidation for sustainable resource production and organic pollutant degradation. Angew. Chem. Int. Ed. 2020; 59: 20538–44.