Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

New Journal of Chemistry

Supporting Information

Fabrication of an AAO-Based Surface-Enhanced Raman Scattering

Substrate for the Identification of Levofloxacin in Milk

Nan LI, ^{ab} Siqingaowa HAN, ^{*ac} Shuang LIN, ^a Xuan-yu SHA, ^a and Wuliji HASI^{*a}

a. National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China.

b. College of Art and Sciences, Northeast Agricultural University, Harbin 150030, China.

c. Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028043, China.

List of supplementary material

Fig. S1 (a) Protein in milk was deposited by 15% trichloroacetic acid, and the sample was shaken slightly. (b) The sample was centrifuged. (c) The supernatant was filtered through a 0.22 μm filter. (d) The filtrate used for testing.
Fig. S2 Raw UV-visible absorption spectra of three different sized Ag colloids

Fig. S3 The number distribution of the three different sized Ag NPs in the AAO holes: (a) 59 nm, (b) 41 nm, and (c) 29 nm.

Fig. S4 UV-visible absorption spectra of a blank AAO template and the Ag NP-AAO SERS substrate

Fig. S5 SERS spectra of the levofloxacin aqueous solution with different concentrations based on AAO-based SERS Substrate with 41 nm Ag NPs. The laser energy is 60 mW and the integration time is 5 s.

Table S1 A performance comparison of Ag NPs with different particle sizes assembled in AAO-based SERS substrate

Table S2 A comparison of methods used for the detection of antibiotics in milk

Fig. S1 (a) Protein in milk was deposited by 15% trichloroacetic acid, and the sample was shaken slightly. (b) The sample was centrifuged. (c) The supernatant was filtered through a $0.22 \mu m$ filter. (d) The filtrate used for testing.

Fig. S2 Raw UV-visible absorption spectra of three different sized Ag colloids

Fig. S3 The number distribution of the three different sized Ag NPs in the AAO holes: (a) 59 nm, (b) 41 nm, and (c) 29 nm.

Fig. S4 UV-visible absorption spectra of a blank AAO template and the Ag NP-AAO SERS substrate

Fig. S5 SERS spectra of the levofloxacin aqueous solution with different concentrations based on AAO-based SERS Substrate with 41 nm Ag NPs. The laser energy is 60 mW and the integration time is 5 s.

Table S1 A performance comparison of Ag NPs with different particle sizes assembled in AAO-based SERS substrate

Particle size, nm	The number distribution in the AAO	Yields of distribution, %	AEF
29	5	57.1	1.04×10^{6}
41	4	83.3	1.17×10^{6}
59	1	64	0.86×10^{6}

Table S2 A comparison of methods used for the detection of antibiotics in milk

Method	Limit of detection	Linear range	Time required for	Requirement for large-	Dafaranaa	
			detection	scale instruments	Reference	
Liquid chromatography						
coupled with tandem mass	3.56 µg kg ⁻¹	0.5~100 µg kg ⁻¹	30~90 min	Yes	[1]	
spectrometry (LC-MS/MS)						
High performance liquid						
chromatography equipped	0.02 μg mL ⁻¹	0.08~2 μg mL ⁻¹	30 min~6 hr	Yes	[2]	
with UV detector (HPLC-						
UV)						
SERS	1.88×10 ⁻⁶ M	1×10 ⁻⁶ ~2×10 ⁻⁵ M	30 min	No	This work	

References

- 1. U. Acaroz, S. Ince, D. Arslan-Acaroz, I. Kucukkurt and A. Eryavuz, *Kafkas Universitesi Veteriner Fakultesi Dergisi*, 2020, **26**, 97-102.
- 2. M. Negarian, A. Mohammadinejad and S. A. Mohajeri, Food Chem., 2019, 288, 29-38.