Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Metal Free C-H Functionalization of Pyrrolidine to Pyrrolinium-based Room Temperature Ionic Liquid Crystals

Sumana Mandal,^a Ravindra Kumar Gupta,^a ${}^{\Psi}$ Suraj Kumar Pathak,^a ${}^{\Psi}$ D. S. Shankar Rao,^b S. Krishna Prasad,^b Achalkumar Ammathnadu Sudhakar*and Chandan K. Jana*

^aDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.

^bCentre for Nano and Soft Matter Sciences (CeNS), P. B. No. 1329, Prof. U. R. Rao Road, Jalahalli, Bengaluru, 560 013, Karnataka, India

E-mail: achalkumar@iitg.ac.in, ckjana@iitg.ac.in

 ${}^{\Psi}$ Equal contribution

Scheme s1: Metal free direct C-H functionalization of pyrrolidine to pyrroline derivatives.

Scheme s2: Structures of additional pyrrolinium ions.

<u>1. Mesomorphic behavior</u>

Figure S1. DSC scans of compound **10/3/MI** in the first cooling and second heating scans (a); POM image obtained for compound **10/3/MI** at 100 °C in Col_h phase (b); XRD profile of compound **10/3/MI** depicting the intensity $vs 2\theta$ obtained in Col_h phase at 80 °C (c). Scale bar corresponds to 100 μ m.

Figure S2. DSC scans of compound **8/3/MI** in the first cooling and second heating scans (a); POM image obtained for compound **8/3/MI** at 150 °C in Col_{ob1} phase (b); at 100 °C in Col_{ob2} phase (c); at 28 °C in Col_{ob2} phase (d); XRD profile of compound **8/3/MI** depicting the intensity *vs* 20 obtained in Col_{ob1} phase at 150 °C (e); Col_{ob2} phase at 100 °C (f) and Col_{ob2} phase at 28 °C (g). Scale bar corresponds to 100 μ m.

Figure S3. DSC scans of compound **12/3/EI** in the first cooling and second heating scans (a); POM images obtained for compound **12/3/EI** at 135 °C in Col_{h1} phase (b); at 50 °C in Col_{h2} phase (c); at 25 °C in Col_{h2} phase (d); XRD profiles of compound **12/3/EI** depicting the intensity *vs* 2 θ obtained for Col_{h1} phase (e); for the Col_{h2} phase at 60 °C (e) and for the Col_{h2} phase at 25 °C (f). Scale bar corresponds to 100 µm.

Figure S4. DSC scans of compound **12/3/C12I** in the first cooling and second heating scans (a); POM image obtained for compound **12/3/C12I** at 80 °C in Col_r phase (b); XRD profiles of compound **12/3/C12I** depicting the intensity *vs* 2 θ obtained for Col_r phase at 80 °C (c). Scale bar corresponds to 100 µm.

Figure S5. DSC scans of compound **12/3/MBF** in the first cooling and second heating scans (a); POM images obtained for compound **12/3/MBF** at 120 °C in Col_h phase (b); and at 20 °C in Col_r phase (c); XRD profiles of compound **12/3/MBF** depicting the intensity *vs* 20 obtained for Col_h phase (d) and for the Col_r phase (e). Scale bar corresponds to 100 μ m.

Figure S6. DSC scans of compound **12/3/EBF** in the first cooling and second heating scans (a); POM images obtained for compound **12/3/EBF** at 130 °C in Col_h phase (b); and at 30 °C in Col_r phase (c); XRD profiles of compound **12/3/EBF** depicting the intensity $vs 2\theta$ obtained for Col_h phase (d) and for the Col_r phase (e). Scale bar corresponds to 100 µm.

Figure S7. DSC scans of compound 12(3,4)/MI in the first cooling and second heating scans (a); POM image obtained for the Sm phase of compound 12(3,4)/MI (b); the XRD profiles of compound 12(3,4)/MI depicting the intensity *vs* 20 obtained for Col_h phase (c). Scale bar corresponds to 100 µm.

Figure S8. DSC scans of compound 12(3,4)/MBF in the first cooling and second heating scans (a); POM image obtained for the Col_h phase of compound 12(3,4)/MBF at 150 °C (b); the XRD profiles of compound 12(3,4)/MBF depicting the intensity *vs* 20 obtained for Col_h phase (c). Scale bar corresponds to 100 µm.

Figure S9. DSC scans of compound 12(3,4)/EBF in the first cooling and second heating scans (a); POM image obtained for compound 12(3,4)/EBF at 140 °C in Col_h phase (b); XRD profile of compound 12(3,4)/EBF depicting the intensity vs 20 obtained for Col_h phase at 150 °C (c). Scale bar corresponds to 100 µm.

Figure S10. DSC scans of compound **12(3,5)/MI** in the first cooling and second heating scans (a); POM image obtained for compound **12(3,5)/MI** at 140 °C (b); at 28 °C in Col_h phase (c); XRD profile of compound **12(3,5)/MI** depicting the intensity *vs* 20 obtained for Col_h phase at 138 °C (d) and at 28 °C (e). Scale bar corresponds to 100 μ m.

Figure S11. DSC scans of obtained for the crystalline compounds 12/3/ProI, 12/3/BnBr, 12(2,3)/MI, 12/p/MI, 12(2,4)/MI and 14/p/MI in the first cooling (black trace) and second heating (red trace) scans.

Figure S12. DSC scans of compound **12/p/EBF** in the first cooling and second heating scans (a); POM image obtained for compound **12/p/EBF** at 156 °C in Sm₁ phase (b); at 120 °C (c); at 28 °C in Sm₂ phase (d); XRD profile of compound **12/p/EBF** depicting the intensity *vs* 2 θ obtained in Sm₁ phase at 156 °C (e); in Sm₁ phase at 120 °C (f) and in Sm₂ phase at 28 °C (g). Scale bar corresponds to 100 µm.

Table S1. Results of (hkl) indexation of the XRD profiles of ionic LCs at a given temperature (T) of the mesophases^a

Entry/	Phase	$d_{ m obs}$ (Å)	$d_{\rm cal}({\rm \AA})$	Miller	Lattice parameters (Å)
Molecular length	(T/°C)			indices	
(Å)				(hk)	
12/3/MI	130	35.08	35.08	10	a = 40.50; c = 4.37; S
24.99	Col_h	$4.37(h_a)$			=1230.5; $V=$
					5376.6; <i>Z</i> = 3.8. ^b
	28	40.98	40.98	01	a = 40.98; b = 20.37; S
	Col_{r}	20.37	20.37	10	= 834.8;
		4.44			c = 3.73; V = 3117.6; Z
		3.73			= 2.2
10/3/MI	80	34.54	34.54	10	<i>a</i> = 39.88; <i>S</i> = 1193.1; <i>c</i>
22.6	Col_h	4.07			= 3.27;
		$3.78(h_a)$			V = 3905.8; Z = 3.1.
		$3.27(h_c)$			
8/3/MI	150	33.35	33.35	01	$a = 38.68; b = 40.55; \gamma =$
20	Col _{ob1}	31.82	31.82	10	55.3°
		18.38	18.39	11	

		15.87	15.91	20	S = 1290.3, V = 5383.8,
		$4.17(h_a)$			$Z = 4.7^{b}$
					2
	100	21.96		10	- 25.04 h 24.99
	100	51.80	21.04	10	a = 55.94, b = 54.88,
	Col _{ob2}	30.92	31.86	01	$\gamma = 62.4^{\circ}$
		18.35	30.92	11	S = 1111.2, V = 5242.5,
		15.85	18.35	20	Z = 4.6
		4.72(h)	15.03		L = 1.0
		$4.72(n_a)$	15.95		
		$3.71(n_c)$			
	28			11	a = 31.91, b = 39.81,
	Colus	31 31	31 31	01	$x = 27^{\circ}$
	C01 _{0b2}	10.00	10.00	01	y = 27
		18.08	18.08	22	S = 5/6.92, V = 4185.5,
		15.70	15.65	10	Z = 3.7
		14.49	14.49	20	
		7.25	7.25		
		4 81			
		7.01			
	100	4.4/	05.10	10	40.07.0.1270
	130	35.48	35.48	10	a = 40.97; S = 1259; c =
	Col _{h1}	$4.43(h_a)$			4.43;
					$V = 5575.9; Z = 3.9.^{b}$
	60	45 60	45 60	10	a = 52.7 $S = 2401$ $c =$
12/3/EI	Colu	4 14 (h)	12100	10	3.04.
26.2	COIh2	$4.14(n_a)$			J.74,
		$3.94(h_c)$			V = 9460, Z = 6.6
	25	46.02	46.02	10	a = 53.1; S = 2117.4; c =
	Col _{h2}	$4.10(h_a)$			3.87;
		$3.87(h_c)$			V = 8192.4; $Z = 5.7$
12/3/C12I	80	38.82	38.82	01	a = 30.9; $b = 38.82$; S =
	Cal	20.00	20.00	10	u = 50.5, v = 50.02, v = 1100.5
38.4	COIr	50.90	50.90	10	1199.3;
		19.34	19.41	02	c = 4.32; V = 4977.8; Z
		12.88	12.94	03	= 3.0
		9.94	9.92	23	
		5 26	5 22	27	
		4.32	4 30	72	
		4.34	4.30	72	
		$4.21(n_a)$	4.18	/3	
	1	$4.15(h_c)$			
12/3/MBF	130	34.38	34.38	10	a = 39.70; S = 1182.2; c
25.1	Colh1	19.78	19.85	11	=4.51;
		17 10	17 19	20	$V = 5327 3 \cdot 7 = 40^{b}$
		451(h)	11.17	20	
	20	$+.31(n_a)$	42.01	01	22.00 1 12.01
	28	43.0	43.01	01	a = 23.99; b = 43.01 c =
	Colr	23.99	23.99	10	3.89;
		11.06	11.55	21	S = 1031.8; V = 4017.2;
		4.32			Z = 3.0
		3 89	3 64		
		5.07	5.04		
14/2/DDD	1.40	24.52	24.52	10	20.96 5 1101.0
12/5/EBF	140	34.52	34.52	10	a = 39.86; S = 1191.8; c
25.1	Col_{h}	19.86	19.93	11	=4.51;
		17.17	17.26	20	$V = 5375.7; Z = 3.9.^{b}$
		$4.51(h_{a})$			
	30	<u>13 16</u>	13 16	01	a = 30.62 · $b = 13.46$ · S
		+3.40	75.40	11	a = 50.02, b = 45.40, 5 = 1220 7:
	Colr	25.03	25.03		= 1330.7;
		11.28	10.87	04	

		9.34	9.24	32	c = 3.91; V =	= 5203.2; Z	
		$4.3(h_a)$			= 3.79.		
		$3.91(h_c)$					
^a The length (L) of t	he molecule	(estimated f	from the C	Chem 3D 17	molecular mo	del software	
from Camb	ridge	Soft).		$d_{ m obs}$:	spacing	observed;	
d_{cal} : spacing calculated (deduced from the lattice parameters; a for Col _h phase, a and b for							
Col_{r} phase). The spacings marked h_{a} and h_{c} correspond to the diffused reflections in the wide-							
angle region arising from correlations between the alkyl chains and core regions, respectively.							
Z indicates the number of molecules per columnar slice of thickness h_c , estimated from the							
lattice area S and the volume V. ^b In the absence of the core–core peak, the spacing of the alkyl							
chain stacking (h_a)	is used in th	ese calculation	ons.			-	

Table S2. Results of (hkl) indexation of the XRD profiles of ionic LCs at a given temperature (T) of the mesophases^a

	Phase	$d_{ m obs}$	$d_{\rm cal}({\rm \AA})$	Miller	Lattice parameters (Å)
Entry/	$(T/^{o}C)$	(Å)		indices	
Molecular length (Å)				(<i>hk</i>)	
12(3,4)/MI	120	39.13	39.13	10	a = 45.19, c = 4.41, S =
25.9	Col_h	19.46	19.57	20	1531.4,
		4.41			V = 6749.4, Z = 7.5
		(h_a)			
12(3,4)/MBF	130	38.30	38.30	10	<i>a</i> = 44.22; <i>S</i> = 1466.7; <i>c</i> =
25.7	Col_h	22.03	22.11	11	4.56
		19.06	19.15	20	V = 6689.3; Z = 6.4
		4.56			
		(h_a)			
12(3,4)/EBF	150	37.42	37.43	10	a = 43.21; S = 1400.6; c =
25.8	Col_h	21.54	21.61	11	4.59
		18.63	18.71	20	V = 6437.1; Z = 6
		4.59			
	138	32.50	32.50	10	a = 37.57; S = 1056; c =
12(3,5)/MI	Col_h	4.88			3.66
24.7		(h_a)			V = 3868.2; Z = 3.5
		3.66			
		(h_c)			
	28	31.64	31.64	10	a = 36.58; S = 1001.1; c =
	Col_h	4.74			3.58
		(h_a)			V = 3584.2; Z = 3.2
		3.58			
		(h_c)			
12/p/EBF	156	37.18			d/L = 1.4
27	Sm_1	4.72			
		(h_a)			
	120	39.62			d/L = 1.5
	Sm_2	19.71			
	Ratio:	4.70			
	1:0.5	(h_a)			
	28	48.83			d/L = 1.8
	Sm_2	24.23			
		16.12			

Ratio:	12.07		1
1:0.5:	4.64		
0.33:0.2	(h_a)		
5	4.44		
	(h_c)		

^aThe length (L) of the molecule (estimated from the Chem 3D 17 molecular model software from Cambridge Soft). d_{obs} : spacing observed; d_{cal} : spacing calculated (deduced from the lattice parameters; *a* for Col_h phase, *a* and *b* for Col_r phase). The spacings marked h_a and h_c correspond to the diffused reflections in the wide-angle region arising from correlations between the alkyl chains and core regions, respectively. *Z* indicates the number of molecules per columnar slice of thickness h_c , estimated from the lattice area *S* and the volume *V*. ^bIn the absence of the core–core peak, the spacing of the alkyl chain stacking (h_a) is used in these calculations.

Experimental Section:

General: All reactions involving air- or moisture-sensitive reagents or intermediates were carried out in oven-dried glassware under an argon atmosphere. Dichloromethane (CH₂Cl₂) was freshly distilled from phosphorus (V) oxide (P_2O_5). Secondary amines were distilled from KOH and stored under argon. Commercial grade xylene, DMF, THF were distilled before use. All other solvents and reagents were purified according to standard procedures or were used as received from Aldrich, Acros, Merck and Spectrochem. ¹H, ¹³CNMR spectroscopy: Varian Mercury plus 400 MHz, Bruker 600 MHz (at 298 K). Chemical shifts, δ (in ppm), are reported relative to TMS δ (1H) 0.0 ppm, δ (13C) 0.0 ppm which was used as the inner reference. Otherwise the solvents residual proton resonance and carbon resonance (CHCl₃, δ (1H) 7.26 ppm, δ (13C) 77.2 ppm; CD₃OD, (1H) 3.31 ppm, δ (13C) 49.0 ppm) were used for calibration. Column chromatography: Merck, Spectrochem or FischerScientific silica gel 60-120 and neutral Al₂O₃ under gravity. IR spectra were recorded on Perkin Elmer Instrument at normal temperature making KBr pellet grinding the sample with KBr (IR Grade). MS (ESI-HRMS): Mass spectra were recorded on an Agilent Accurate-MassQ-TOF LC/MS 6520 and peaks are given in m/z (% of basis peak). The mesogenic compounds were investigated for their liquid crystalline behavior (birefringence and fluidity) by employing a polarizing optical microscope (Nikon Eclipse LV100POL) equipped with a programmable hot stage (Mettler Toledo FP90). Clean glass slides and coverslips were employed for the polarizing optical microscopic observations. The transition temperatures and associated enthalpy changes were determined by differential scanning calorimeter (Mettler Toledo DSC1) under nitrogen atmosphere. Peak temperatures obtained in DSC corresponding to transitions were in agreement with the polarizing optical microscopic observations. The transition temperatures obtained from calorimetric measurements of the first heating and cooling cycles at a rate of 5 °C/min are tabulated. In the cases where the DSC signatures are not observed for the phase transitions, the transition temperatures have been taken from microscopic observations. Temperature dependent X-ray diffraction studies were carried on unaligned powder samples in

Lindemanncapillaries (1mm diameter) held in programmable hot stage and irradiated with CuK α radiation ($\lambda = 1.5418$ Å). The samples were filled in the capillary tube in their isotropic state and their both ends were flame sealed. The apparatus essentially consisted of a high resolution powder X-ray diffractometer (Xenocs) equipped with a focusing elliptical mirror and a high resolution fast detector. UV-Vis spectra were obtained by using Perkin-Elmer Lambda 750, UV/VIS/NIR spectrometer. Fluorescence emission spectra in solution state were recorded with Horiba Fluoromax-4 fluorescence spectrophotometer or *Perkin Elmer* LS 50B spectrometer.

Experimental procedure:

3,4,5-Tris(octyloxy)benzaldehyde (1a):¹

 $\begin{array}{c} \text{H} \quad \text{O} \\ \text{C}_8\text{H}_{17}\text{O} \quad \text{OC}_8\text{H}_{17} \end{array} \qquad \begin{array}{c} \text{The compound was synthesized through a reported procedure.} \ ^1\text{H} \ \text{NMR} \\ (600 \ \text{MHz}, \ \text{CDCl}_3) \ \delta = 9.82 \ (\text{s}, 1\text{H}), \ 7.08 \ (\text{s}, 2\text{H}), \ 4.06 - 4.02 \ (\text{m}, 6\text{H}), \ 1.85 \\ - \ 1.80 \ (\text{m}, 4\text{H}), \ 1.77 - 1.72 \ (\text{m}, 2\text{H}), \ 1.63 - 1.62 \ (\text{m}, 2\text{H}), \ 1.50 - 1.45 \ (\text{m}, 6\text{H}), \ 1.38 - 1.25 \ (\text{m}, 22\text{H}), \ 0.89 - 0.87 \ (\text{m}, 9\text{H}) \ \text{ppm.} \end{array}$

3,4,5-Tris(decyloxy)benzaldehyde (1b):¹

The compound was synthesized in a known procedure used for **1a** preparation. ¹H NMR (600 MHz, CDCl₃) δ = 9.83 (s, 1H), 7.08 (s, 2H), 4.07 - 4.02 (m, 6H), 1.85 - 1.81 (m, 4H), 1.78 - 1.73 (m, 2H), 1.51 - 1.46 (m, 6H), 1.37 - 1.27 (m, 36H), 0.89 - 0.87 (m, 9H) ppm.

3,4-Bis(dodecyloxy)benzaldehyde (1e):²

The compound was synthesized in a known procedure used for **1a** preparation. ¹H NMR (600 MHz, CDCl₃) δ = 9.82 (s, 1H), 7.41 – 7.39 (m, 2H), 6.94 (d, *J* = 7.8 Hz, 1H), 4.08 – 4.03 (m, 4H), 1.88 – 1.83 (m, 4H), 1.49 – 1.45 (m, 4H), 1.38 – 1.26 (m, 32H), 0.88 (t, *J* = 7.2 Hz, 6H) ppm.

Ethyl 3,5-dihydroxybenzoate:³

Conc. H₂SO₄ was added drop wise to a solution of 3,5-dihydroxybenzoic acid (10.0 g, 64.93 mmol)

soluble in EtOH (50 mL) and was refluxed for 24 hours. After completion of reaction (checked by TLC), the reaction was stopped, EtOH was evaporated under reduced pressure, the reaction mixture was quenched with saturated NaHCO₃ solution, diluted with ethyl acetate, washed with brine, dried over anhydrous Na₂SO₄, and

concentrated in *vaccuo* to get crude product which was recrystallized from EtOH to give desired product (1.06 g, 90%). ¹H NMR (600 MHz, MeOD) δ = 6.934 (s, 1H), 6.930 (s, 1H), 6.48 – 6.47 (m, 1H), 4.29 (q, *J* = 7.2 Hz, 2H), 1.34 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (151 MHz, MeOD) δ = 168.2, 159.6, 133.3, 108.7, 108.1, 62.0, 14.5 ppm.

Ethyl 3,5-bis(dodecyloxy)benzoate:⁴

A mixture of ethyl 3,5-dihydroxybenzoate (6.50 g, 12.50 mmol), anhydrous K₂CO₃ (7.59 g, 55.01

mmol) were taken in dry DMF (10 mL) and heated at 80 °C for 24 hours under nitrogen atmosphere. Then the reaction mixture was poured into icewater and extracted with CH₂Cl₂. The combined extract was washed with

mmol), n-bromododecane (6.60 mL, 27.61 mmol) and KI (41 mg, 0.25

water and brine, dried over anhydrous Na₂SO₄ and concentrated. The crude product was purified by column chromatography on neutral alumina. Elution with hexanes followed by (ethyl acetate:hexane, 1:15) yielded the desired product (5.50 g, 85%). ¹H NMR (600 MHz, CDCl₃) δ = 7.164 (s, 1H), 7.160 (s, 1H), 6.63 – 6.62 (m, 1H), 4.35 (q, *J* = 7.2 Hz, 2H), 3.97 – 3.95 (m, 4H), 1.79 – 1.75 (m, 4H), 1.47 – 1.42 (m, 4H), 1.39 – 1.26 (m, 35H), 0.89 – 0.87 (m, 6H) ppm.

3,5-Bis(dodecyloxy)phenyl)methanol:⁵

To a stirred suspension of lithium aluminium hydride (LAH) (0.38 g, 9.97 mmol) in dry THF (15 mL)

CH₂OH under nitrogen atmosphere, ethyl 3,5-bis(dodecyloxy)benzoate (3.44 g, 6.65 mmol) soluble in THF (5 mL) was added drop wise at 0 °C. Then the reaction mixture was allowed to reach room temperature and stirred for 2 hours. Excess LAH present was quenched by the addition of moist sodium sulphate. Reaction mixture was extracted with EtOAc (5 X 50 mL). The combined extracts were washed with water, dried over anhydrous Na₂SO₄ and concentrated in *vaccuo*. Purification was done by column chromatography over silica gel (60-120) with (ethyl acetate:hexane, 1:10) as eluent to give the desired product (2.50 g, 79%). ¹H NMR (600 MHz, CDCl₃) δ = 6.471 (s, 1H), 6.468 (s, 1H), 6.36 – 6.35 (m, 1H), 4.56 (s, 2H), 3.91 (t, *J* = 6.6 Hz, 4H), 2.15 (br. s, 1H), 1.77 – 1.72 (m, 4H), 1.45 – 1.40 (m, 4H), 1.33 – 1.26 (m, 32H), 0.89 – 0.87 (m, 6H) ppm.

3,5-Bis(dodecyloxy)benzaldehyde (1g):⁶

An appropriate (3,5-bis(dodecyloxy)phenyl)methanol (2.17 g, 4.56 mmol) was taken in DCM (15 mL). To this pyridiniumchlorochromate (1.08 g, 5.02 mmol) adsorbed over equal amount of silica gel is added and stirred at room temperature for 1 hour. The reaction mixture was filtered over

celite bed and concentrated to get the crude product, which was further purified by column chromatography on silica gel (60-120) with (ethyl acetate:hexane, 1:10) as eluent to give **1g** (1.72 g, 80%). ¹H NMR (600 MHz, CDCl₃) δ = 9.87 (s, 1H), 6.974 – 6.971 (m, 2H), 6.69 (s, 1H), 3.97 (t, *J* = 6.6 Hz, 4H), 1.80 – 1.76 (m, 4H), 1.47 – 1.42 (m, 4H), 1.35 – 1.27 (m, 32H), 0.89 – 0.87 (m, 6H) ppm.

3,4,5-Tris(dodecyloxy)benzaldehyde (1i):¹

3,4,5-Tris(hexadecyloxy)benzaldehyde (11):⁷

The compound was synthesized in a known procedure used for **1a** preparation. ¹H NMR (600 MHz,

 $CDCl_{3}) \delta = 9.83 (s, 1H), 7.08 (s, 2H), 4.06 - 4.02 (m, 6H), 1.85 - 1.80 (m, 4H), 1.76 - 1.72 (m, 2H), 1.50 - 1.45 (m, 6H), 1.35 - 1.26 (m, 72H), 0.89 - 0.87 (m, 9H).$

General procedure for the alkylation of aldehydes (GP I):

In a clean round bottom flask, a mixture of hydroxy benzaldehyde (3.38 - 10.86 mmol, 1.0 equiv.), anhydrous K₂CO₃ (7.22 – 47.83 mmol, 2.2 equiv.), alkyl bromide (3.94 – 26.06 mmol, 1.2 equiv.) and KI (0.07 – 0.22 mmol, 0.02 equiv.) was taken in dry DMF (4 – 10 mL) and heated at 85-90 °C for 24 hours under nitrogen atmosphere. Then the reaction mixture was poured into ice water and extracted with ethyl acetate (3 X 30 mL). The organic layer was washed with brine (40 mL), dried over anhydrous Na₂SO₄ and concentrated in *vacuo*. The crude product was purified by column chromatography on silica.

4-(Dodecyloxy)benzaldehyde (1c):⁸

According to GP I, 4-hydroxybenzaldehyde (1.0 g, 8.20 mmol), anhydrous K₂CO₃ (2.49 g, 18.04 $H \rightarrow O$ mmol), *n*-bromododecane (2.30 mL, 9.60 mmol) and KI (27 mg, 0.16 mmol) were taken in 10 mL dry DMF and heated at 80 °C for 24 hours under nitrogen atmosphere and then SiO₂-column chromatography (ethyl acetate:hexane, 1:30) gave product **1c** as white solid (2.2 g, 93%). ¹H NMR (600 MHz, CDCl₃) δ = 9.86 (s, 1H), 7.81 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 2H), 4.02 (t, *J* = 6.6 Hz, 2H), 1.83 – 1.78 (m, 2H), 1.48 – 1.26 (m, 18H), 0.89 – 0.87 (m, 3H) ppm.

3-(Dodecyloxy)benzaldehyde (1d):

According to GP I, 3-hydroxybenzaldehyde (1.0 g, 8.20 mmol), anhydrous K₂CO₃ (2.49 g, 18.04

mmol), *n*-bromododecane (2.30 mL, 9.61 mmol) and KI (27 mg, 0.16 mmol) was taken in 10 mL dry DMF and heated at 80 °C for 24 hours under nitrogen atmosphere and then SiO₂-column chromatography (ethyl acetate:hexane, 1:30) gave product **1d** as colourless liquid (2.19 g, 92%). FTIR (KBr): $\breve{v} = 3383$, 2925,

2854, 2723, 1702, 1599, 1585, 1486, 1467, 1454, 1386, 1321, 1287, 1263, 1168, 1148, 1078, 1033, 869, 787, 757, 683, 648, 605, 442 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ = 9.96 (s, 1H), 7.43 – 7.40 (m,

2H), 7.38 – 7.37 (m, 1H), 7.17 – 7.15 (m, 1H), 4.00 (t, J = 6.6 Hz, 2H), 1.82 – 1.77 (m, 2H), 1.48 – 1.43 (m, 2H), 1.37 – 1.26 (m, 16H), 0.88 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) $\delta = 192.3$, 159.9, 137.9, 130.1, 123.4, 122.1, 112.9, 68.4, 32.1, 29.84, 29.81, 29.77, 29.7, 29.54, 29.53, 29.3, 26.2, 22.9, 14.3 ppm. HRMS (ESI): Exact mass calculated for C₁₉H₃₁O₂+([M+H]+): 291.2319; Found: 291.2312.

2,4-Bis(dodecyloxy)benzaldehyde (1f):

According to GP I, 2,4-dihydroxybenzaldehyde (1.5 g, 10.86 mmol), anhydrous K₂CO₃ (6.6 g, 47.83

 $\begin{array}{c} \text{mmol}, n\text{-bromododecane (6.2 mL, 26.06 mmol) and KI (36 mg, 0.22 mmol)} \\ \text{was taken in 10 mL dry DMF and heated at 80 °C for 24 hours under nitrogen atmosphere and then SiO_2-column chromatography (ethyl acetate:hexane, 1:30) gave product$ **1f**as white solid (4.0 g, 77%). Mp 40–45 °C. FTIR (KBr): $<math>\tilde{v} = 3434, 2957, 2919, 2850, 1693, 1584, 1483, 1464, 1397, 1383, 131305, 1269, 1251, 1208, 1171, 1079, 1059, 1046, 1024, 994, 893, 791, 729, 719, 674, 546 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) <math>\delta = 10.45$ (s, 1H), 7.39 (d, J = 7.8 Hz, 1H), 7.12 – 7.06 (m, 2H), 4.13 (t, J = 6.6 Hz, 2H), 4.00 (t, J = 6.0 Hz, 2H), 1.86 – 1.83 (m, 2H), 1.81 – 1.77 (m, 2H), 1.52 – 1.44 (m, 4H), 1.37 – 1.27 (m, 32H), 0.89 – 0.87 (m, 6H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 190.6, 152.8, 152.5, 130.3, 123.9, 119.3, 119.1, 75.2, 69.3, 32.1, 30.3, 29.9, 29.85, 29.82, 29.7, 29.6, 29.5, 26.4, 26.2, 22.9, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₃₁H₅₅O₃⁺ ([M+H]+): 475.4146; Found: 475.4167.$

2,3-Bis(dodecyloxy)benzaldehyde (1h):

According to GP I, 2,3-dihydroxybenzaldehyde (1.0 g, 7.25 mmol), anhydrous K_2CO_3 (4.4 g, 31.88

mmol), *n*-bromododecane (4.1 mL, 17.40 mmol) and (24 mg, 0.14 mmol) was taken in 7 mL dry DMF and heated at 80 °C for 24 hours under nitrogen atmosphere and then SiO₂-column chromatography (ethyl acetate:hexane, 1:30) gave product **1h** as white solid (2.5 g, 72%). Mp 40–45 °C. FTIR (KBr): $\check{v} = 3434$, 2954, 2917, 2851,

1668, 1644, 1601, 1503, 1466, 1435, 1330, 1261, 1190, 1100, 1066, 1017, 997, 958, 835, 823, 806, 719, 676, 601, 552, 500, 461 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 10.32$ (s, 1H), 7.79 (d, J = 9.0 Hz, 1H), 6.50 (d, J = 8.4 Hz, 1H), 6.42 – 6.41 (m, 1H), 4.03 – 3.99 (m, 4H), 1.85 – 1.82 (m, 2H), 1.80 – 1.76 (m, 2H), 1.50 – 1.43 (m, 4H), 1.35 – 1.26 (m, 32H), 0.89 – 0.87 (m, 6H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 188.4$, 165.9, 163.5, 130.3, 119.1, 106.4, 99.1, 68.6, 32.1, 29.84, 29.82, 29.77, 29.7, 29.5, 29.3, 29.2, 26.24, 26.16, 22.9, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₃₁H₅₅O₃⁺ ([M+H]+): 475.4146; Found: 475.4145.

2,4-Bis(tetradecyloxy)benzaldehyde (1j):

According to GP I, 2,4-dihydroxybenzaldehyde (0.5 g, 3.62 mmol), anhydrous K₂CO₃ (2.2 g, 15.90

mmol), *n*-bromotetradecane (2.36 mL, 7.96 mmol) and KI (12 mg, 0.07 mmol) was taken in 5 mL dry DMF and heated at 80 °C for 24 hours under nitrogen atmosphere and then SiO₂-column chromatography (ethyl acetate:hexane, 1:30) gave product **1j** as white solid (1.35 g, 70%). Mp 38–43 °C. FTIR (KBr): $\tilde{v} = 3430, 2953, 2918, 2849, 1678, 1607, 1572, 1494, 1467, 1439, 1402, 1386,$

1311, 1297, 1265, 1192, 1114, 1021, 861, 822, 792, 718, 644, 609, 575, 464 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) $\delta = 10.33$ (s, 1H), 7.79 (d, J = 8.8 Hz, 1H), 6.52 – 6.50 (m, 1H), 6.42 (d, J = 2.0 Hz, 1H), 4.04 – 3.99 (m, 4H), 1.87 – 1.75 (m, 4H), 1.51 – 1.43 (m, 4H), 1.36 – 1.26 (m, 40H), 0.90 – 0.86 (m, 6H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 188.6$, 166.0, 163.5, 130.3, 119.1, 106.4, 99.1, 68.7, 68.6, 32.1, 29.90, 29.88, 29.86, 29.80, 29.76 (2C), 29.6, 29.55, 29.54, 29.3, 29.2, 26.25, 26.17, 22.9, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₃₅H₆₃O₃⁺ ([M+H]+): 531.4772; Found: 531.4757.

4-(Tetradecyloxy)benzaldehyde (1k):

According to GP I, 4-hydroxybenzaldehyde (0.4 g, 3.28 mmol), anhydrous K₂CO₃ (1.0 g, 7.22 mmol), *n*-bromotetradecane (1.18 mL, 3.94 mmol) and KI (11 mg, 0.66 mmol) was taken in 4 mL dry DMF and heated at 80 °C for 24 hours under nitrogen atmosphere and then SiO₂column chromatography (ethyl acetate:hexane, 1:30) gave product **1k** as white solid OC₁₄H₂₉ (1.03 gm, 90%). Mp 45–50 °C. FTIR (KBr): \check{v} = 3366, 2918, 2849, 2733, 1693, 1603, 1578, 1509, 1469, 1428, 1396, 1386, 1311, 1255, 1216, 1161, 1109, 1039, 1024, 1013, 858, 832, 720, 651, 640, 616, 514 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ = 9.88 (s, 1H), 7.83 (d, J = 8.4 Hz, 2H), 6.99 (d, J = 8.4 Hz, 2H), 4.04 (t, J = 6.6 Hz, 2H), 3.75 – 3.70 (m, 2H), 1.85 – 1.78 (m, 2H), 1.49 – 1.44 (m, 2H), 1.37 – 1.23 (m, 18H), 0.90 – 0.86 (m, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 191.0, 164.4, 132.1, 129.9, 114.9, 68.6, 32.1, 29.88, 29.86, 29.84, 29.77, 29.7, 29.55, 29.53, 29.2, 26.1, 22.9, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₂₁H₃₅O₂⁺ ([M+H]+): 319.2632; Found: 319.2645.

General procedure for the synthesis of β -substituted secondary cyclic imines (GP II):

3,5-Dinitrobenzoic acid (0.28 - 4.37 mmol, 0.6 equiv.) was added to a solution of aldehydes (0.44 - 6.72 mmol, 1 equiv.) and pyrrolidine (1.74 - 28.89 mmol, 4 equiv.) in *m*-xylene (5 - 10 mL) and the mixture was refluxed for 18 hours. After disappearance of starting materials (indicated by TLC), the reaction was quenched by addition of saturated sodium bicarbonate solution (50 mL). The mixture was extracted with dichloromethane $(3 \times 40 \text{ mL})$. The combined organic layers were washed (brine), dried (Na₂SO₄) and concentrated under reduced pressure. The crude product was subjected to column chromatography (neutral alumina) to afford the analytically pure product.

(E)-4-(3,4,5-Tris(octyloxy)benzylidene)-3,4-dihydro-2*H*-pyrrole (2a):

According to GP II, a mixture of 3,4,5-tris(octyloxy)benzaldehyde (0.4 g, 0.82 mmol), pyrrolidine

(0.27 mL, 3.26 mmol), 3,5-dinitrobenzoic acid (0.11 g, 0.53 mmol) was refluxed for 18 hours in 5 mL m-xylene and column chromatography (neutral-Al₂O₃; ethyl acetate:hexane, 1:5) gave 2a as brownish gum (0.42 g, 48%). FTIR (KBr): ŭ = 3433, 2954, 2925, 2855, 1685, 1638, 1577, 1504, 1467, 1432, 1334, 1236, 1161, 1115, 1037, 976, 925, 873, 817, 723, 633, 516, 425, 411 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ = 7.84 (s, 1H), 6.73 (s, 1H), 6.67 (s, 2H), 4.22 -

4.18 (m, 2H), 3.98 (t, J = 6.6 Hz, 6H), 2.83 - 2.81 (m, 2H), 1.84 - 1.79 (m, 4H), 1.77 - 1.72 (m, 2H), 1.49 - 1.45 (m, 6H), 1.37 - 1.28 (m, 24H), 0.89 (t, J = 6.6 Hz, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta = 168.6, 153.4, 142.6, 139.0, 132.1, 127.6, 108.2, 73.8, 69.6, 62.4, 32.1, 32.0, 30.6, 29.74, 29.67,$ 29.58, 29.56, 29.5, 28.4, 26.3, 22.89, 22.86, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): HRMS (ESI): Exact mass calculated for C₃₅H₆₀NO₃⁺ ([M+H]+): 542.4568; Found: 542.4568.

(*E*)-4-(3,4,5-Tris(decyloxy)benzylidene)-3,4-dihydro-2*H*-pyrrole (2b):

According to GP II, a mixture of 3,4,5-tris(decyloxy)benzaldehyde (0.46 g, 0.81 mmol), pyrrolidine

(0.27 mL, 3.24 mmol), 3,5-dinitrobenzoic acid (0.11 g, 0.53 mmol) was refluxed for 18 hours in 5 mL *m*-xylene and column chromatography (neutral-Al₂O₃; ethyl acetate:hexane, 1:5) gave **2b** as brownish gum (0.20 g, 40%). FTIR (KBr): v = 3416, 2955, 2925, 2854, 1637, 1577, 1504, C10H21O OC10H21 1466, 1434, 1378, 1335, 1238, 1116, 803, 721, 518, 470, 444, 413, 403 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ = 7.83 (s, 1H), 6.72 (s, 1H), 6.67 (s, 2H), 4.21 – 4.18 (m, 2H), 4.00 - 3.97 (m, 6H), 2.82 - 2.80 (m, 2H), 1.83 - 1.79 (m, 4H), 1.77 - 1.72 (m, 2H), 1.50 - 1.45 (m, 6H), 1.35 - 1.27 (m, 36H), 0.89 - 0.87 (m, 9H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 168.6, 153.3,$ 142.6, 138.8, 132.1, 127.6, 108.0, 73.7, 69.4, 62.4, 32.14, 32.12, 30.5, 29.94, 29.87, 29.85, 29.79, 29.6, 29.5, 28.4, 26.3, 22.9, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₄₁H₇₂NO₃⁺ ([M+H]+): 626.5507; Found: 626.5535.

(E)-4-(4-(Dodecyloxy)benzylidene)-3,4-dihydro-2H-pyrrole (2c):

According to GP II, a mixture of 4-(dodecyloxy)benzaldehyde (1.95 g, 6.72 mmol), pyrrolidine (2.21

mL, 28.89 mmol), 3,5-dinitrobenzoic acid (0.93 g, 4.37 mmol) was refluxed for 18 hours in 10 mL *m*-xylene and column chromatography (neutral-Al₂O₃; ethyl acetate:hexane, 1:5) gave **2c** as brownish gum (1.13 g, 50%). FTIR (KBr): $\breve{v} = 3428$, 2917, 2850, 1605, 1578, 1511, 1473, 1423, 1395, 1385, 1314, 1289, 1254, 1240, 1181, 1166, 1118, 1033, 1023, 1002, 969, 924, 885, 851, 829, 810, 775, 719, 597, 538, 516, 413 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 7.81$ (s, 1H), 7.37 (d, J = 8.4 Hz, 2H), 6.90 (d, J = 7.8 Hz, 2H), 6.74 (s, 1H), 4.18 – 4.15 (m, 2H), 3.96 (t, J = 6.0 Hz, 2H), 2.78 – 2.75 (m, 2H), 1.79 – 1.76 (m, 2H), 1.45 – 1.44 (m, 2H), 1.34 – 1.26 (m, 16H), 0.89 – 0.87 (m, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 168.6$, 159.1, 141.4, 130.3, 129.4, 126.7, 114.8, 68.2, 62.3, 32.0, 29.79, 29.77, 29.73, 29.71, 29.52, 29.48, 29.3, 28.2, 26.1, 22.8, 14.2 ppm. HRMS (ESI): Exact mass calculated for C₂₃H₃₆NO⁺ ([M+H]+): 342.2791; Found: 342.2796.

(E)-4-(3-(Dodecyloxy)benzylidene)-3,4-dihydro-2H-pyrrole (2d):

According to GP II, a mixture of 3-(dodecyloxy)benzaldehyde (0.40 g, 1.38 mmol), pyrrolidine (0.45 mL, 5.52 mmol), 3,5-dinitrobenzoic acid (0.19 g, 0.90 mmol) was refluxed for 18 hours in 7 mL *m*-xylene and column chromatography (neutral-Al₂O₃; ethyl acetate:hexane, 1:5) gave **2d** as brownish gum (0.21 g, 44%). FTIR (KBr): \check{v} = 3435, 2954, 2918, 2852, 1640, 1593, 1582, 1488, 1474, 1384, 1318, 1299, 1268, 1239, 1175, 1165, 1035, 973, 954, 925, 898, 868, 838, 805, 778, 719, 684, 596, 521, 454 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ = 7.87 (s, 1H), 7.31 – 7.28 (m, 1H), 7.04 (d, *J* = 7.8 Hz, 1H), 6.99 (s, 1H), 6.85 – 6.84 (m, 1H), 6.79 (s, 1H), 4.21 – 4.19 (m, 2H), 3.97 (t, *J* = 6.6 Hz, 2H), 2.85 – 2.82 (m, 2H), 1.81 – 1.77 (m, 2H), 1.67 – 1.65 (m, 2H), 1.48 – 1.43 (m, 2H), 1.37 – 1.26 (m, 14H), 0.89 – 0.87 (m, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 168.6, 159.5, 143.9, 138.2, 129.7, 127.3, 121.4, 115.1, 114.3, 68.2, 62.4, 32.1, 29.9, 29.84, 29.81, 29.78, 29.6, 29.55, 29.48, 28.5, 26.3, 22.9, 14.3 ppm. HRMS (ESI): Exact mass calculated for C₂₃H₃₆NO⁺ ([M+H]+): 342.2791; Found: 342.2804.

(E)-4-(3,4-Bis(dodecyloxy)benzylidene)-3,4-dihydro-2H-pyrrole (2e):

According to GP II, a mixture of 3,4-bis(dodecyloxy)benzaldehyde (0.4 g, 0.84 mmol), pyrrolidine (1.6 mL, 3.37 mmol), 3,5-dinitrobenzoic acid (0.12 g, 0.55 mmol) was refluxed for 18 hours in 5 mL *m*-xylene and column chromatography (neutral-Al₂O₃; ethyl acetate:hexane, 1:5) gave **2e** as brownish gum (0.23 g, 51%). FTIR (KBr): $\check{v} = 3430$, 2955, 2921, 2851, 1632, 1599, 1572, 1518, 1470, 1380, 1328, 1263, 1239, 1179, 1156, 1136, 1064, 1025, 917, 882, 796, 719, 625, 605, 519, 468 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 7.83$ (s, 1H), 7.02 – 7.00 (m, 2H), 6.89 (d, J = 7.8 Hz, 1H), 6.74 (s, 1H), 4.21 – 4.18

(m, 2H), 4.02 (t, *J* = 6.0 Hz, 4H), 2.85 – 2.75 (m, 2H), 1.84 – 1.81 (m, 4H), 1.50 – 1.44 (m, 4H), 1.38–

1.26 (m, 32H), 0.89 – 0.87 (m, 6H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 168.7, 149.5, 149.1, 141.7, 130.0, 127.2, 122.5, 114.6, 113.6, 69.6, 69.3, 62.4, 32.1, 29.91, 29.87, 29.8, 29.65, 29.62, 29.58, 29.5, 29.4, 28.3, 26.3, 26.2, 22.9, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₃₅H₆₀NO₂⁺ ([M+H]+): 526.4619; Found: 526.4637.

(E)-4-(2,4-Bis(dodecyloxy)benzylidene)-3,4-dihydro-2H-pyrrole (2f):

According to GP II, a mixture of 2,4-bis(dodecyloxy)benzaldehyde (2.23 g, 4.71 mmol), pyrrolidine (1.6 mL, 18.8 mmol), 3,5-dinitrobenzoic acid (0.65 g, 3.06 mmol) was refluxed for 18 hours in 7 mL *m*-xylene and column chromatography (neutral-Al₂O₃; ethyl acetate:hexane, 1:5) gave **2f** as brownish $OC_{12}H_{25}$ gum (1.0 g, 40%). FTIR (KBr): $\check{v} = 3421, 2954, 2921, 2852, 1604, 1575, 1502,$

1469, 1428, 1385, 1312, 1288, 1273, 1226, 1184, 1159, 1106, 1069, 1032, 925, 972, 926, 882, 871, 820, 798, 786, 719, 632, 610, 598, 515, 487, 472, 441, 422 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ = 7.86 (s, 1H), 7.43 (d, *J* = 8.4 Hz, 1H), 7.17 – 7.16 (m, 1H), 6.50 – 6.48 (m, 1H), 6.46 – 6.45 (m, 1H), 4.16 – 4.13 (m, 2H), 3.98 – 3.95 (m, 4H), 2.77 – 2.74 (m, 2H), 1.85 – 1.81 (m, 2H), 1.80 – 1.75 (m, 2H), 1.50 – 1.43 (m, 4H), 1.39 – 1.26 (m, 32H), 0.89 – 0.87 (m, 6H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 169.2, 160.5, 158.5, 141.0, 128.8, 120.9, 118.8, 105.2, 99.9, 68.7, 68.3, 62.1, 32.1, 29.9, 29.83, 29.80, 29.77, 29.6, 29.5, 29.4, 29.3, 28.4, 26.3, 22.9, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₃₅H₆₀NO₂⁺ ([M+H]+): 526.4619; Found: 526.4634.

(E)-4-(3,5-Bis(dodecyloxy)benzylidene)-3,4-dihydro-2*H*-pyrrole (2g):

According to GP II, a mixture of 3,5-bis(dodecyloxy)benzaldehyde (0.42 g, 0.89 mmol), pyrrolidine

C₁₂H₂₅O

(0.29 mL, 3.56 mmol), 3,5-dinitrobenzoic acid (0.12 g, 0.38 mmol) was refluxed for 18 hours in 5 mL *m*-xylene and column chromatography (neutral-Al₂O₃; ethyl acetate:hexane, 1:5) gave 2g as brownish gum (0.38

 $C_{12}H_{25}O^{++}OC_{12}H_{25}$ g, 43%). FTIR (KBr): $\check{v} = 3430$, 3065, 3003, 2956, 2924, 2851, 1639, 1590, 1466, 1392, 1373, 1352, 1293, 1178, 1152, 1129, 1070, 1050, 971, 945, 928, 919, 871, 833, 813, 767, 734, 724, 685, 593, 514 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 7.83$ (s, 1H), 6.71 (s, 1H), 6.571 – 6.569 (m, 2H), 6.41 (s, 1H), 4.18 – 4.16 (m, 2H), 3.93 (t, J = 6.6 Hz, 4H), 2.81 – 2.80 (m, 2H), 1.79 – 1.74 (m, 4H), 1.46 – 1.42 (m, 4H), 1.34 – 1.26 (m, 32H), 0.88 (t, J = 7.2 Hz, 6H) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta = 168.5$, 160.5, 143.9, 138.5, 127.4, 107.5, 101.3, 68.2, 62.4, 32.1, 29.83, 29.80, 29.77, 29.7, 29.6, 29.5, 29.4, 28.5, 26.2, 22.8, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₃₅H₆₀NO₂⁺ ([M+H]+): 526.4619; Found: 526.4621.

(*E*)-4-(2,3-Bis(dodecyloxy)benzylidene)-3,4-dihydro-2*H*-pyrrole (2h):

According to GP II, a mixture of 2,3-bis(dodecyloxy)benzaldehyde (1.82 g, 3.85 mmol), pyrrolidine (1.3 mL, 15.4 mmol), 3,5-dinitrobenzoic acid (0.53 g, 2.50 mmol) was refluxed for 18 hours in 7 mL *m*-xylene and column chromatography (neutral-Al₂O₃; ethyl acetate:hexane, 1:5) gave **2h** as brownish gum (1.03 g, 51%). FTIR (KBr): $\check{v} = 3431$, 2956, 2924, 2854, 1639, 1595, 1577, 1466, 1383, 1273, 1259, 1214, 1154, 1075, 1031, 924, 749, 721, 515 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 7.89$ (s, 1H), 7.22 – 7.21 (m, 1H), 7.12 (d, J = 7.8 Hz, 1H), 7.05 – 7.02 (m, 1H), 6.88 – 6.85 (m, 1H), 4.19 – 4.16 (m, 2H), 3.99 – 3.93 (m, 4H), 2.80 – 2.77 (m, 2H), 1.85 – 1.76 (m, 6H), 1.51 – 1.46 (m, 4H), 1.38 – 1.26 (m, 30H), 0.89 – 0.87 (m, 6H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 169.1$, 152.7, 147.4, 144.1, 131.3, 123.7, 121.6, 119.8, 113.4, 74.1, 68.9, 62.3, 56.0, 32.1, 30.5, 29.92, 29.88, 29.86, 29.8, 29.63, 29.59, 28.3, 26.4, 22.9, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₃₅H₆₀NO₂⁺ ([M+H]+): 526.4619; Found: 526.4629.

(E)-4-(3,4,5-Tris(dodecyloxy)benzylidene)-3,4-dihydro-2H-pyrrole (2i):

According to GP II, a mixture of 3,4,5-tris(dodecyloxy)benzaldehyde (0.29 g, 0.44 mmol), pyrrolidine (0.14 mL, 1.74 mmol), 3,5-dinitrobenzoic acid (0.06 g, 0.28 mmol) was refluxed for 18 hours in 5 mL *m*-xylene and column chromatography (neutral-Al₂O₃; ethyl acetate:hexane, 1:5) gave **2i** as brownish gum (0.11 g, 35%). FTIR (KBr):

^ŏ = 3443, 2921, 2851, 1630, 1575, 1507, 1468, 1432, 1384, 1337, 1293, 1244, 1232, 1160, 1123, 970, 921, 874, 814, 721, 636, 513 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ = 7.84 (s, 1H), 6.72 (s, 1H), 6.67 (s, 2H), 4.22 − 4.18 (m, 2H), 4.00 − 3.97 (m, 6H), 2.83 − 2.79 (m, 2H), 1.83 − 1.79 (m, 4H), 1.76 − 1.72 (m, 4H), 1.48 − 1.45 (m, 8H), 1.37 − 1.26 (m, 44H), 0.89 − 0.87 (m, 9H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 168.7, 153.3, 142.6, 138.7, 132.1, 127.6, 107.9, 73.8, 69.4, 62.4, 32.15, 32.14, 30.5, 30.0, 29.95, 29.92, 29.87, 29.86, 29.8, 29.63, 29.61, 29.58, 28.4, 26.3, 22.9, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₄₇H₈₄NO₃⁺ ([M+H]+): 710.6446; Found: 710.6452.

(E)-4-(2,4-Bis(tetradecyloxy)benzylidene)-3,4-dihydro-2H-pyrrole (2j):

According to GP II, a mixture of 2,4-bis(tetradecyloxy)benzaldehyde (0.57 g, 1.07 mmol), pyrrolidine (0.35 mL, 4.28 mmol), 3,5-dinitrobenzoic acid (0.15 g, 0.69 mmol) was refluxed for 18 hours in 6 mL *m*-xylene and column chromatography (neutral-Al₂O₃; ethyl acetate:hexane, 1:5) gave **2j** as brownish gum (0.27 g, 43%). FTIR (KBr): $\check{v} = 3426, 2954, 2918, 2852, 1604, 1574, 1502,$

1472, 1438, 1386, 1313, 1288, 1276, 1201, 1184, 1159, 1073, 1040, 1030, 1050, 1018, 1007, 926, 882, 871, 814, 799, 717, 631, 640, 598, 535, 515, 487, 426 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.89 – 7.84 (m, 1H), 7.47 – 7.42 (m, 1H), 7.20 – 7.17 (m, 1H), 6.53 – 6.46 (m, 2H), 4.21 – 4.11 (m, 2H), 4.00 – 3.95 (m, 4H), 2.80 – 2.73 (m, 2H), 1.87 – 1.75 (m, 4H), 1.52 – 1.26 (m, 44H), 0.91 – 0.86 (m, 6H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 169.3, 160.5, 158.5, 141.1, 128.8, 120.9, 118.9, 105.3, 99.9, 68.7, 68.3, 62.1, 32.1, 29.90, 29.89, 29.87, 29.82, 29.81, 29.78, 29.60, 29.57, 29.5, 29.4, 28.4, 26.3, 26.2, 22.9, 14.3 ppm. HRMS (ESI): Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. Exact mass calculated for C₃₉H₆₈NO₂⁺([M+H]+): 582.5245; Found: 582.5263.

(*E*)-4-(4-(Tetradecyloxy)benzylidene)-3,4-dihydro-2*H*-pyrrole (2k):

According to GP II, a mixture of 4-(tetradecyloxy)benzaldehyde (0.87 g, 2.86 mmol), pyrrolidine N (0.94 mL, 11.43 mmol), 3,5-dinitrobenzoic acid (0.4 g, 1.89 mmol) was refluxed for 18 hours in 16 mL *m*-xylene and column chromatography (neutral-Al₂O₃; ethyl acetate:hexane, 1:5) gave **2k** as brownish gum (0.50 g, 47%). FTIR (KBr): \check{v} = 3433, 2939, 2917, 2850, 1605, 1578, 1510, 1474, 1395, 1385, 1307, 1290, 1254, 1240, 1181, OC₁₄H₂₉ 1166, 1118, 1040, 1021, 969, 957, 924, 885, 851, 829, 799, 775, 751, 718, 667, 597, 538, 517 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.83 (s, 1H), 7.38 (d, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 8.4 Hz, 2H), 6.76 (s, 1H), 4.24 – 4.15 (m, 2H), 3.99 – 3.96 (m, 2H), 2.82 – 2.76 (m, 2H), 1.80 – 1.77 (m, 2H), 1.45 – 1.26 (m, 22H), 0.89 – 0.86 (m, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 168.7, 159.1, 141.5, 130.3, 129.4, 126.8, 114.8, 68.2, 62.4, 32.1, 29.9, 29.84, 29.78, 29.76, 29.6, 29.5, 29.4, 28.3, 26.2, 22.9, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₂₅H₄₀NO⁺ ([M+H]+): 370.3104; Found: 370.3119.

(E)-4-(3,4,5-Tris(hexadecyloxy)benzylidene)-3,4-dihydro-2*H*-pyrrole (21):

pyrrolidine (0.41 mL, 5.03 mmol), 3,5-dinitrobenzoic acid (0.17 g, 0.82 mmol) was refluxed for 18 hours in 10 mL *m*-xylene and column chromatography (neutral-Al₂O₃; ethyl acetate:hexane, 1:5) gave **2l** as brownish gum (0.61 g, 55%). FTIR (KBr): $\check{v} = 3431$, 2955, 2918, 2849, 1630, 1572, 1508, 1469, 1432, 1384, 1371, 1337, 1293, 1251, 1232, 1160, 1023, 986, 969, 934, 921, 875, 814, 790, 635, 586 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 7.84$ (s, 1H), 6.73 (s, 1H), 6.66 (s, 2H), 4.21 - 4.19 (m, 2H), 4.00 - 3.97 (m, 6H), 2.83 - 2.80 (m, 2H), 1.83 - 1.72 (m, 8H), 1.50 - 1.45 (m, 6H), 1.37 - 1.34 (m, 6H), 1.31 - 1.26 (m, 64H), 0.89 - 0.87 (m, 9H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 168.6$, 153.3, 142.5, 138.7, 132.0, 127.7, 107.8, 73.7, 69.4, 62.3, 32.1, 30.5, 29.95, 29.93, 29.88, 29.86, 29.8, 29.63, 29.59, 28.3, 26.3, 22.9, 14.3 ppm. Total count of ¹³C is less than expected

According to GP II, a mixture of 3,4,5-tris(hexadecyloxy)benzaldehyde (1.04 g, 1.26 mmol),

due to the merging of signals in the aromatic region. HRMS (ESI): Exact mass calculated for $C_{59}H_{108}NO_3^+([M+H]+)$: 878.8324; Found: 878.8342.

General procedure for the synthesis of α,β -unsaturated secondary cyclic iminium ions (GP III): Alkylating reagent (MeI, Me₃O⁺BF4⁻, Et₃O⁺BF4⁻) (0.14 – 1.59 mmol, 1.5 equiv.) was added to solution of β -unsaturated cyclic imines (0.09 – 0.72 mmol, 1.0 equiv.) in mixture of DCM and CH₃CN (1:3, 1 – 4 mL) solvents and the mixture was stirred at room temperature for next 24-72 hours under inert atmosphere. After completion of reaction (checked by TLC), the reaction mixture was concentrated *in vacuo*, the solid was filtered through a filter paper, washed with ETOAc (4 X 20 mL) and dried to give the iminium ions.

(*E*)-1-methyl-4-(3,4,5-tris(dodecyloxy)benzylidene)-3,4-dihydro-2*H*-pyrrolium iodide (12/3/MI):

According to GP III, methyl iodide (32 µL, 0.50 mmol) was reacted with 2i (0.18 g, 0.25 mmol) in 4

mL DCM:CH₃CN (1:3) for 24 hours. Filtration of the solid precipitate gave **12/3/MI** as yellow solid (0.17 g, 79%). FTIR (KBr): $\check{v} = 3427$, 2953, 2918, 2849, 1609, 1578, 1568, 1506, 1464, 1443, 1378, 1340, 1316, 1253, 1177, 1154, 1123, 1092, 1029, 989, 969, 871, 803, 720, 627, 504 cm⁻¹.¹H NMR (600 MHz, CDCl₃) $\delta = 9.80$ (s, 1H), 7.74 (s, 1H), 6.72 (s, 2H), 4.42 – 4.39 (m, 2H), 4.05 – 4.03 (m, 2H), 3.97 – 3.95 (m, 4H), 3.85 (s, 3H),

3.37 - 3.35 (m, 2H), 1.82 - 1.79 (m, 4H), 1.76 - 1.71 (m, 2H), 1.49 - 1.44 (m, 6H), 1.35 - 1.33 (m, 6H), 1.31 - 1.26 (m, 42H), 0.88 (t, J = 7.2 Hz, 9H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 173.1$, 153.5, 146.5, 142.3, 133.8, 129.0, 110.1, 73.9, 69.6, 60.3, 41.3, 32.1, 30.5, 29.92, 29.90, 29.87, 29.8, 29.7, 29.6, 29.5, 27.6, 26.2, 22.9, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. Exact mass calculated for C₄₈H₈₆NO₃⁺ ([M]⁺): 724.6602; Found: 724.6613.

(*E*)-1-methyl-4-(3,4,5-tris(dodecyloxy)benzylidene)-3,4-dihydro-2*H*-pyrrolium tetrafluoroborate (12/3/MBF):

According to GP III, trimethyloxonium tetrafluoroborate (0.06 g, 0.42 mmol) was reacted with 2i

3.92 (m, 4H), 3.68 (s, 3H), 3.32 - 3.30 (m, 2H), 1.81 - 1.77 (m, 4H), 1.76 - 1.70 (m, 2H), 1.48 - 1.43

(m, 6H), 1.34 - 1.26 (m, 48H), 0.89 - 0.87 (m, 9H). ¹³C NMR (151 MHz, CDCl₃) $\delta = 173.5$, 153.5, 146.1, 142.1, 134.3, 129.1, 110.0, 73.9, 69.5, 59.6, 40.2, 32.1, 30.6, 30.0, 29.95, 29.91, 29.89, 29.8, 29.7, 29.6, 27.4, 26.35, 26.27, 22.9, 14.3. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₄₈H₈₆NO₃⁺ ([M]⁺): 724.6602; Found: 724.6608.

(*E*)-1-ethyl-4-(3,4,5-tris(dodecyloxy)benzylidene)-3,4-dihydro-2*H*-pyrrolium tetrafluoroborate (12/3/EBF):

According to GP III, triethyloxonium tetrafluoroborate (0.06 g, 0.31 mmol) was reacted with 2i (0.15

g, 0.21 mmol) in 3 mL DCM:CH₃CN (1:1) for 24 hours. Filtration of the solid precipitate gave 12/3/EBF as yellow solid (0.13 g, 76%). FTIR (KBr): ŭ = 3401, 3058, 2954, 2918, 2849, 2872, 1608, 1577, 1507, 1446, 1388, 1316, 1471, 1342, 1252, 1180, 1151, 1132, 1062, 1124, 1038, 990, 970, 809, 720, 928, 899, 871, 841, 629, 694, 522 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 8.74 (s, 1H), 7.64 (s, 1H), 6.76 (s, 2H), 4.40 – 4.37 (m,

2H), 4.03 (t, J = 6.4 Hz, 2H), 3.96 (t, J = 6.0 Hz, 4H), 3.26 – 3.21 (m, 2H), 1.83 – 1.78 (m, 4H), 1.76 – 1.70 (m, 2H), 1.50 – 1.43 (m, 6H), 1.36 – 1.26 (m, 53H), 0.90 – 0.86 (m, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta = 174.1$, 153.5, 147.7, 142.3, 134.3, 129.0, 110.1, 74.0, 69.5, 53.9, 32.2, 32.1, 30.6, 30.0, 29.95, 29.93, 29.90, 29.89, 29.8, 29.7, 29.62, 29.60, 29.5, 26.35, 26.26, 22.9, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₄₉H₈₈NO₃⁺ ([M]⁺): 738.6759; Found: 738.6770.

(E)-1-ethyl-4-(3,4,5-tris(dodecyloxy)benzylidene)-3,4-dihydro-2H-pyrrolium iodide (12/3/EI):

According to GP III, ethyl iodide (28 µL, 0.35 mmol) was reacted with 2i (0.12 g, 0.18 mmol) in 2

mL DCM:CH₃CN (1:3) for 24 hours. Filtration of the solid precipitate gave **12/3/EI** as yellow solid (0.08 g, 50%). FTIR (KBr): $\check{v} = 3435$, 2954, 2918, 2849, 1604, 1575, 1506, 1464, 1443, 1386, 1315, 1342, 1250, 1153, 1177, 1132, 1124, 990, 806, 720, 630, 511 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 9.80$ (s, 1H), 7.83 (s, 1H), 6.74 (s, 2H), 4.37 – 4.35 (m, 2H), 4.16 – 4.03 (m, 2H), 4.06 – 4.04 (m, 2H), 3.98 – 3.96 (m, 4H), 3.38 – 3.35 (m, 2H),

 $1.83 - 1.79 \text{ (m, 4H)}, 1.76 - 1.72 \text{ (m, 2H)}, 1.57 \text{ (t, } J = 7.2 \text{ Hz}, 3\text{H}), 1.50 - 1.45 \text{ (m, 6H)}, 1.38 - 1.26 \text{ (m, 48H)}, 0.89 - 0.87 \text{ (m, 9H)} \text{ ppm.}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, \text{CDCl}_3) \delta = 171.5, 153.5, 146.7, 142.4, 133.9, 129.1, 110.2, 73.9, 69.6, 58.1, 49.1, 32.0, 30.5, 29.85, 29.78, 29.7, 29.6, 29.5, 27.3, 26.3, 26.2, 22.8, 14.2, 13.2 \text{ ppm.}$ Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for $C_{49}H_{88}NO_3^+$ ([M]⁺): 738.6759; Found: 738.6769.

(*E*)-1-propyl-4-(3,4,5-tris(dodecyloxy)benzylidene)-3,4-dihydro-2*H*-pyrrolium (12/3/ProI):

According to GP III, propyl iodide (53 µL, 0.50 mmol) was reacted with 2i (0.19 g, 0.27 mmol) in 4

1.38 - 1.26 (m, 48H), 1.04 - 1.01 (m, 3H), 0.88 (t, J = 7.2 Hz, 9H). ¹³C NMR (151 MHz, CDCl₃) $\delta = 172.4$, 153.5, 147.2, 142.4, 133.4, 129.0, 110.1, 74.0, 69.6, 57.8, 55.3, 32.14, 32.13, 30.6, 30.0, 29.95, 29.94, 29.92, 29.90, 29.87, 29.86, 29.8, 29.64, 29.60, 29.58, 29.5, 27.3, 26.3, 26.2, 22.9, 21.2, 14.3, 11.1 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₅₀H₉₀NO₃⁺ ([M]⁺): 752.6915; Found: 752.6932.

(*E*)-1-benzyl-4-(3,4,5-tris(dodecyloxy)benzylidene)-3,4-dihydro-2*H*-pyrrolium bromide (12/3/BnBr):

According to GP III, benzyl bromide (46 µL, 0.39 mmol) was reacted with 2i (0.14 g, 0.19 mmol) in

2 mL DCM:CH₃CN (1:3) for 72 hours. Filtration of the solid precipitate gave **12/3/BnBr** as yellow solid (0.04 g, 23%). FTIR (KBr): $\check{v} = 3435$, 3043, 2953, 2919, 2849, 2870, 1622, 1574, 1504, 1444, 1393, 1264, 1210, 1173, 1155, 1028, 1465, 1339, 1324, 1251, 11888, 1119, 929, 856, 973, 964, 1044, 994, 807, 766, 722, 699, 640, 625, 498 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 10.32$ (s, 1H), 7.77 (s, 1H), 7.55 – 7.54 (m, 2H), 7.40 – 7.38 (m, 3H), 6.67 (s, 2H), 5.49 (s, 2H), 4.34 – 4.32 (m, 2H), 4.02 (t, *J* =

 $O_{C_{12}H_{25}}$ 7.38 (m, 3H), 6.67 (s, 2H), 5.49 (s, 2H), 4.34 – 4.32 (m, 2H), 4.02 (t, J = 6.6 Hz, 2H), 3.93 – 3.91 (m, 4H), 3.27 – 3.25 (m, 2H), 1.81 – 1.76 (m, 4H), 1.74 – 1.70 (m, 2H), 1.47 – 1.43 (m, 6H), 1.34 – 1.26 (m, 48H), 0.89 – 0.87 (m, 9H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 173.0, 153.4, 147.5, 142.4, 133.7, 131.3, 129.9, 129.8, 129.6, 129.0, 110.1, 73.9, 69.5, 57.2, 56.9, 32.1, 30.5, 29.92, 29.90, 29.8, 29.7, 29.62, 29.58, 29.56, 29.5, 27.1, 26.3, 26.2, 22.9, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₅₄H₉₀NO₃⁺ ([M]⁺): 800.6915; Found: 800.6937.$

C₁₂H₂₅O

(*E*)-1-dodecyl-4-(3,4,5-tris(dodecyloxy)benzylidene)-3,4-dihydro-2*H*-pyrrolium iodide (12/3/C12I):

According to GP III, n-iodohexadecane (0.12 mL, 0.50 mmol) was reacted with 2i (0.18 g, 0.25 mmol)

in 4 mL DCM:CH₃CN (1:3) for 72 hours. Filtration of the solid precipitate gave **12/3/C12I** as yellow solid (0.04 g, 16%). FTIR (KBr): $\check{v} = 3434$, 2955, 2920, 2851, 1614, 1575, 1504, 1468, 1439, 1382, 1340, 1250, 1172, 1123, 1027, 990, 813, 721, 634, 493, 427 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 9.77$ (s, 1H), 7.84 (s, 1H), 6.74 (s, 2H), 4.42 – 4.38 (m, 2H), 4.09 (t, J = 7.2 Hz, 2H), 4.03 (t, J = 6.6 Hz, 2H), 3.96 (t, J = 6.0 Hz, 4H),

3.37 - 3.34 (m, 2H), 1.85 - 1.71 (m, 12H), 1.49 - 1.24 (m, 71H), 0.88 (t, J = 6.6 Hz, 9H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 172.1$, 153.5, 146.9, 142.5, 133.6, 129.0, 110.3, 73.9, 69.7, 58.0, 54.0, 32.1, 30.6, 29.91, 29.89, 29.83, 29.78, 29.75, 29.69, 29.64, 29.56, 29.5, 29.3, 27.7, 27.4, 26.6, 26.3, 26.2, 22.8, 14.2 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₅₉H₁₀₈NO₃⁺ ([M]⁺): 878.8324; Found: 878.8335.

(E)-1-methyl-4-(3,4,5-tris(decyloxy)benzylidene)-3,4-dihydro-2H-pyrrolium iodide (10/3/MI):

According to GP III, methyl iodide (21 µL, 0.34 mmol) was reacted with **2b** (0.11 g, 0.17 mmol) in 4 mL DCM:CH₃CN (1:3) for 24 hours. Filtration of the solid precipitate gave **10/3/MI** as yellow solid (0.08 g, 75%). FTIR (KBr): $\breve{v} = 3429$, 2955, 2922, 2851, 1609, 1578, 1506, 1466, 1443, 1378, 1316, 1253, 1177, 1156, 1128, 1122, 1089, 972, 845, 804, 720, 626, 503 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 9.74$ (s, 1H), 7.76 (s,

1H), 6.74 (s, 2H), 4.42 – 4.39 (m, 2H), 4.04 – 4.02 (m, 2H), 3.97 - 3.95 (m, 4H), 3.85 (s, 3H), 3.36 - 3.34 (m, 2H), 1.82 - 1.77 (m, 4H), 1.76 - 1.71 (m, 2H), 1.678 - 1.676 (m, 2H), 1.49 - 1.44 (m, 6H), 1.35 - 1.27 (m, 34H), 0.88 (t, J = 7.2 Hz, 9H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 173.2$, 153.5, 146.6, 142.4, 133.7, 129.0, 110.2, 74.0, 69.6, 60.3, 41.3, 32.1, 30.6, 29.93, 29.87, 29.85, 29.80, 29.76, 29.65, 29.59, 29.56, 27.6, 26.3, 26.2, 22.9, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. Exact mass calculated for C₄₂H₇₄NO₃⁺ ([M]⁺): 640.5663; Found: 640.5681.

(*E*)-1-methyl-4-(3,4,5-tris(octyloxy)benzylidene)-3,4-dihydro-2*H*-pyrrolium iodide (8/3/MI):

According to GP III, methyl iodide (35 µL, 0.34 mmol) was reacted with 2a (0.15 g, 0.28 mmol) in 6

-1.29 (m, 30H), 0.91 -0.87 (m, 9H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 173.2$, 153.5, 146.5, 142.4, 133.8, 128.9, 110.2, 74.0, 69.6, 60.3, 41.3, 32.1, 32.0, 30.5, 29.7, 29.6, 29.54, 29.52, 29.46, 27.6, 26.3, 26.2, 22.9, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₃₆H₆₂NO₃⁺ ([M]⁺): 556.4724; Found: 556.4726.

(*E*)-4-(3,4-bis(dodecyloxy)benzylidene)-1-methyl-3,4-dihydro-2*H*-pyrrolium iodide (12/(3,4)/MI):

According to GP III, methyl iodide (13 µL, 0.20 mmol) was reacted with 2e (0.05 g, 0.10 mmol) in 2

(*E*)-4-(3,4-bis(dodecyloxy)benzylidene)-1-methyl-3,4-dihydro-2*H*-pyrrolium tetrafluoroborate (12/(3,4)/MBF):

According to GP III, trimethyloxonium tetrafluoroborate (32 mg, 0.22 mmol) was reacted with 2e

(0.06 g, 0.11 mmol) in 2 mL DCM:CH₃CN (1:3) for 24 hours. Filtration of the solid precipitate gave **12/(3,4)/MBF** as yellow solid (0.04 g, 59%). FTIR (KBr): $\check{v} = 3428, 2955, 2918, 2849, 1646, 1619, 1590, 1519, 1468, 1419, 1390, 1325, 1283, 1251, 1184, 1150, 1071, 1040, 995, 955, 915, 871, 832, 916, 721, 631, 616, 600,$

 1 OC₁₂H₂₅ 521, 499 cm^{-1.1}H NMR (600 MHz, CDCl₃) δ = ¹H NMR (600 MHz, CDCl₃) δ = 8.67 (s, 1H), 7.56 (s, 1H), 7.10 (d, *J* = 7.8 Hz, 1H), 6.98 (s, 1H), 6.87 (d, *J* = 8.4 Hz, 1H), 4.33 – 4.30 (m, 2H), 4.02 (t, *J* = 6.6 Hz, 2H), 3.96 (t, *J* = 6.6 Hz, 2H), 3.67 (s, 3H), 3.31 – 3.29 (m, 2H), 1.85 – 1.78 (m, 4H), 1.49 – 1.44 (m, 4H), 1.36 – 1.26 (m, 32H), 0.89 – 0.87 (m, 6H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 173.4, 153.1, 149.4, 146.1, 132.9, 127.0, 126.3, 115.9, 113.0, 69.7, 69.3, 59.5, 40.1, 32.1, 29.95, 29.93, 29.88, 29.8, 29.7, 29.63, 29.59, 29.5, 29.3, 27.5, 26.3, 26.2, 22.9, 14.3 ppm. Total

count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for $C_{36}H_{62}NO_2^+([M]^+)$: 540.4775; Found: 540.4778.

(*E*)-4-(3,4-bis(dodecyloxy)benzylidene)-1-ethyl-3,4-dihydro-2*H*-pyrrolium tetrafluoroborate (12/(3,4)/EBF):

According to GP III, triethyloxonium tetrafluoroborate (27 mg, 0.14 mmol) was reacted with 2e (49

 $\begin{array}{c} & \text{mg, } 0.09 \text{ mmol}) \text{ in } 1 \text{ mL DCM:CH}_3\text{CN (1:1) for } 24 \text{ hours. Filtration of the solid} \\ & \text{precipitate gave } 12/(3,4)/\text{EBF} \text{ as yellow solid (41 mg, } 68\%). \text{FTIR (KBr): } \breve{\upsilon} = 3266, \\ & 2955, \, 2918, \, 2849, \, 1618, \, 1587, \, 1517, \, 1467, \, 1440, \, 1396, \, 1282, \, 1249, \, 1183, \, 1149, \\ & 1073, \, 957, \, 914, \, 874, \, 835, \, 798, \, 721, \, 600, \, 522, \, 500 \text{ cm}^{-1}.^{1}\text{H NMR (400 MHz, CDCl}_3) \\ & \delta = 8.65 \text{ (s, 1H)}, \, 7.58 \text{ (s, 1H)}, \, 7.09 \text{ (d, } J = 8.4 \text{ Hz, 1H)}, \, 6.97 \text{ (s, 1H)}, \, 6.85 \text{ (d, } J = 8.4 \\ & \text{Hz, 1H)}, \, 4.33 - 4.29 \text{ (m, 2H)}, \, 4.02 - 3.98 \text{ (m, 2H)}, \, 3.95 - 3.90 \text{ (m, 4H)}, \, 3.29 - 3.26 \end{array}$

(m, 2H), 1.85 - 1.76 (m, 4H), 1.47 - 1.43 (m, 8H), 1.32 - 1.26 (m, 31H), 0.90 - 0.86 (m, 6H) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta = 171.5$, 152.9, 149.2 146.0, 133.0, 127.1, 126.3, 115.8, 112.9, 69.6, 69.2, 57.3, 48.4, 32.1, 29.93, 29.91, 29.87, 29.8, 29.7, 29.63, 29.58, 29.57, 29.4, 29.3, 27.0, 26.25, 26.18, 22.9, 14.3, 12.7 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for $C_{37}H_{64}NO_2^+$ ([M]⁺): 554.4932; Found: 554.4922.

(*E*)-4-(2,3-bis(dodecyloxy)benzylidene)-1-methyl-3,4-dihydro-2*H*-pyrrolium iodide (12/(2,3)MI):

According to GP III, methyl iodide (31 µL, 0.49 mmol) was reacted with 2h (0.12 g, 0.24 mmol) in 4

OC₁₂H₂₅

mL DCM:CH₃CN (1:3) for 24 hours. Filtration of the solid precipitate gave **12/(2,3)MI** as yellow solid (93 mg, 57%). FTIR (KBr): \breve{v} = 3435, 3041, 2953, 2920, 2849, 2870, 1613, 1642, 1589, 1573, 1479, 1467, 1455, 1425, 1379, 1304, 1278, 1263, 1219, 1159, 1193, 1088, 1057, 986, 964, 948, 908, 863, 832, 786, 764, 746, 721, 616, 497 cm⁻¹.¹H NMR (600 MHz, CDCl₃) δ

= 9.36 (s, 1H), 8.06 (s, 1H), 7.08 – 7.06(m, 2H), 7.01 – 7.00 (m, 1H), 4.49 – 4.47 (m, 2H), 4.03 – 4.01 (m, 2H), 3.97 (t, J = 6.6 Hz, 2H), 3.91 (s, 3H), 3.35 – 3.34 (m, 2H), 1.85 – 1.77 (m, 6H), 1.50 – 1.45 (m, 2H), 1.44 – 1.41 (m, 2H), 1.36 – 1.26 (m, 30H), 0.89 – 0.87 (m, 6H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 173.2, 152.7, 149.4, 140.6, 135.8, 128.3, 124.2, 120.7, 117.0, 75.0, 69.0, 60.7, 41.8, 32.09, 32.08, 30.4, 29.91, 29.88, 29.86, 29.8, 29.7, 29.6, 29.55, 29.52, 29.48, 27.7, 26.4, 26.1, 22.8, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aromatic region. HRMS (ESI): Exact mass calculated for C₃₆H₆₂NO₂⁺ ([M]⁺): 540.4775; Found: 540.4771.

(*E*)-4-(2,4-bis(dodecyloxy)benzylidene)-1-methyl-3,4-dihydro-2*H*-pyrrolium iodide (12/(2,4)/MI):

According to GP III, methyl iodide (40 µL, 0.63 mmol) was reacted with 2f (0.15 g, 0.32 mmol) in 4

mL DCM:CH₃CN (1:3) for 24 hours. Filtration of the solid precipitate gave **12/(2,4)/MI** as yellow solid (0.14 g, 66%). FTIR (KBr): $\check{v} = 3432$, 2872, 2922, 2851, 1640, 1584, 1499, 1469, 1447, 1435, 1389, 1318, 1266, 1230, 1193, 1164, 1110, 1079, 1029, 1008, 989, 912, 826, 721, 616, 594, 535, 498, 490 cm⁻¹.¹H NMR (600 MHz, CDCl₃) $\delta = 9.07$ (s, 1H), 8.03 (s, 1H), 7.45 (d, J = 9.0 Hz, 1H), 6.55 – 6.53 (m, 1H), 6.41 (s, 1H), 4.46 – 4.44 (m, 2H), 4.02

-3.97 (m, 4H), 3.86 (s, 3H), 3.34 -3.22 (m, 2H), 1.87 -1.84 (m, 2H), 1.81 -1.78 (m, 2H), 1.48 -1.41 (m, 4H), 1.36 -1.26 (m, 31H), 0.89 -0.87 (m, 6H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 172.5$, 164.7, 161.1, 140.2, 131.6, 131.2, 116.4, 106.8, 99.6, 69.2, 68.7, 60.1, 41.3, 32.1, 29.84, 29.81, 29.77, 29.7, 29.54, 29.50, 29.2, 29.1, 28.0, 26.1, 22.9, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aromatic region. HRMS (ESI): Exact mass calculated for C₃₆H₆₂NO₂⁺ ([M]⁺): 540.4775; Found: 540.4787.

(*E*)-4-(3,5-bis(dodecyloxy)benzylidene)-1-methyl-3,4-dihydro-2*H*-pyrrolium iodide (12/(3,5)/MI):

According to GP III, methyl iodide (31 μ L, 0.50 mmol) was reacted with **2g** (0.13 g, 0.25 mmol) in 4 mL DCM:CH₃CN (1:3) for 24 hours. Filtration of the solid precipitate gave **12/(3,5)/MI** as yellow solid (59 mg, 35%). FTIR (KBr): $\check{v} = 3435$, 2955, 2920, 2851, 1618, 1585, 1466, 1418, 1384,

 $C_{12}H_{25}O$ $C_{12}H_{25}$ 1341, 1302, 1260, 1165, 1196, 1090, 1059, 890, 835, 721, 680, 494 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 9.77$ (s, 1H), 7.75 (s, 1H), 6.59 (s, 2H), 6.51 (s, 1H), 4.46 – 4.43 (m, 2H), 3.91 – 3.89 (m, 6H), 3.37 – 3.34 (m, 2H), 1.92 – 1.89 (m, 2H), 1.78 – 1.73 (m, 4H), 1.45 – 1.41 (m, 4H), 1.35 – 1.27 (m, 31H), 0.89 – 0.87 (m, 6H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 173.4$, 160.7, 146.1, 135.8, 135.4, 109.4, 105.1, 68.6, 60.6, 41.6, 32.1, 29.84, 29.80, 29.76, 29.6, 29.5, 29.3, 27.7, 26.2, 22.8, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₃₆H₆₂NO₂⁺ ([M]⁺): 540.4775; Found: 540.4769.

(*E*)-4-(4-(dodecyloxy)benzylidene)-1-methyl-3,4-dihydro-2*H*-pyrrolium iodide (12/p/MI):

According to GP III, methyl iodide (15 μ L, 0.25 mmol) was reacted with **2c** (42 mg, 0.12 mmol) in 2 mL DCM:CH₃CN (1:3) for 24 hours. Filtration of the solid precipitate gave **12/p/MI** as yellow solid (49 mg, 83%). FTIR (KBr): $\breve{v} = 3436, 2948, 2867, 2948, 2921, 1643, 1617, 1594, 1575, 1560, 1511, 1471, 1448, 1423, 1381, 1312, 1274, 1257, 1189, 1178, 1160, 1120, 1090, 1058, 1043, 913, 1003, 1025, 991, 896, 848, 811, 835,$

788, 765, 720, 609, 587, 540, 494 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 9.55 (s, 1H), 7.79 (s, 1H), 7.48 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.4 Hz, 2H), 4.48 – 4.45 (m, 2H), 3.98 (t, J = 6.4 Hz, 2H), 3.83 (s, 3H), 3.33 – 3.30 (m, 2H), 1.82 – 1.75 (m, 2H), 1.45 – 1.41 (m, 2H), 1.32 – 1.27 (m, 16H), 0.90 – 0.86 (m, 3H). ¹³C NMR (101 MHz, cdcl₃) $\delta = 172.6$, 162.4, 145.6, 133.6, 132.5, 126.6, 115.4, 68.5, 60.3, 32.0, 29.74, 29.71, 29.68, 29.6, 29.5, 29.4, 29.1, 27.69, 27.68, 26.0, 22.8, 14.2 ppm. HRMS (ESI): Exact mass calculated for $C_{24}H_{38}NO^+([M]^+)$: 356.2948; Found: 356.2955.

(E)-1-methyl-4-(4-(tetradecyloxy)benzylidene)-3,4-dihydro-2H-pyrrolium iodide (14/p/MI):

According to GP III, methyl iodide (31 µL, 0.49 mmol) was reacted with 2k (0.09 g, 0.24 mmol) in 2

mL DCM:CH₃CN (1:3) for 24 hours. Filtration of the solid precipitate gave 14/p/MI as yellow solid (0.08 g, 67%). FTIR (KBr): ŭ = 3436, 2948, 2920, 2851, 1617, 1594, 1561, 1512, 1471, 1448, 1423, 1382, 1312, 1275, 1259, 1179, 1161, 1120, 1037, 1024, 1013, 976, 914, 896, 811, 719, 610, 588, 540, 494 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 9.62$ (s, 1H), 7.81 (s, 1H), 7.49 (d, J = 9.0 Hz, 2H), 6.94 (d, J = 8.4 Hz, 2H), 4.41 -4.38 (m, 2H), 4.01 - 3.99 (m, 2H), 3.83 (s, 3H), 3.35 - 3.33 (m, 2H), 1.82 - 1.78

(m, 2H), 1.67 - 1.64 (m, 4H), 1.48 - 1.43 (m, 2H), 1.36 - 1.26 (m, 16H), 0.88 (t, J = 7.2 Hz, 3H) ppm.¹³C NMR (151 MHz, CDCl₃) δ = 173.0, 162.6, 146.1, 133.7, 132.4, 126.7, 115.6, 68.7, 60.2, 41.1, 32.1, 29.88, 29.86, 29.85, 29.84, 29.79, 29.7, 29.6, 29.5, 29.2, 27.7, 26.1, 22.9, 14.3 ppm. HRMS (ESI): Exact mass calculated for $C_{26}H_{42}NO^+([M]^+)$: 384.3261; Found: 384.3256.

(*E*)-4-(4-(dodecyloxy)benzylidene)-1-ethyl-3,4-dihydro-2*H*-pyrrolium tetrafluoroborate (12/p/EBF):

According to GP III, triethyloxonium tetrafluoroborate (0.19 g, 1.0 mmol) was reacted with 2c (0.17

BF₄

g, 0.50 mmol) in 4 mL DCM:CH₃CN (1:1) for 24 hours. Filtration of the solid precipitate gave 12/p/EBF as yellow solid (0.12 g, 53%). FTIR (KBr): $\breve{v} = 3443$, 3495, 3084, 3291, 2919, 2849, 1593, 1562, 1513, 1617, 1469, 1430, 1395, 1386, 1324, 1311, 1256, 1175, 1159, 1072, 1055, 1024, 904, 834, 813, 765, 722, 622, 589, 541, 521, 503 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ = 8.67 (s, 1H), 7.63 – 7.62 (m, OC12H25 1H), 7.45 – 7.43 (m, 2H), 6.90 – 6.88 (m, 2H), 4.32 – 4.30 (m, 2H), 3.98 – 3.92 (m, 4H), 3.28 - 3.27 (m, 2H), 1.80 - 1.75 (m, 3H), 1.47 - 1.43 (m, 4H), 1.35 - 1.27 (m, 16H), 0.88 (t, J = 1.27) 7.2 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 171.3, 162.1, 145.1, 133.4, 133.1, 126.9, 115.3, 68.5, 57.4, 48.3, 32.0, 29.8, 29.75, 29.70, 29.55, 29.46, 29.2, 26.9, 26.1, 22.8, 14.2, 12.5 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₂₅H₄₀NO⁺ ([M]⁺): 370.3104; Found: 370.3126.

(E)-4-(2,4-bis(dodecyloxy)benzylidene)-1-methyl-3,4-dihydro-2H-pyrrolium tetrafluoroborate (12/(2,4)/MBF):

According to GP III, trimethyloxonium tetrafluoroborate (0.1 g, 0.67 mmol) was reacted with 2f (0.16

g, 0.33 mmol) in 4 mL DCM:CH₃CN (1:3) for 24 hours. Filtration of the solid precipitate gave **12/(2,4)/MBF** as yellow solid (0.10 g, 48%). FTIR (KBr): $\breve{v} = 3428$, 3089, 2921, 2851, 1587, 1502, 1470, 1436, 1405, 1390, 1319, 1269, 1232, 1194, 1164, 1113, 1067, 1033, 913, 826, 721, 643, 614, 594, 535, 522, 497 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 8.47$ (s, 1H), 7.95 (s, 1H), 7.42 (d, *J* = 9.0 Hz, 1H), 6.53 (d, *J* = 8.4 Hz, 1H), 6.40 (s, 1H), 4.32

(t, J = 6.6 Hz, 2H), 4.00 - 3.95 (m, 4H), 3.67 (s, 3H), 3.31 - 3.26 (m, 2H), 1.86 - 1.83 (m, 2H), 1.81 - 1.78 (m, 2H), 1.47 - 1.41 (m, 4H), 1.35 - 1.27 (m, 32H), 0.89 - 0.86 (m, 6H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 172.6$, 164.4, 160.8, 139.3, 132.0, 131.4, 116.5, 106.6, 99.5, 69.1, 68.6, 59.3, 39.8, 32.0, 29.80, 29.77, 29.74, 29.71, 29.53, 29.48, 29.4, 29.2, 29.0, 27.7, 26.1, 26.0, 22.8, 14.2 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aromatic region. HRMS (ESI): Exact mass calculated for $C_{36}H_{62}NO_2^+([M]^+)$: 540.4775; Found: 540.4750.

(*E*)-4-(2,4-bis(dodecyloxy)benzylidene)-1-ethyl-3,4-dihydro-2*H*-pyrrolium tetrafluoroborate (12/(2,4)/EBF):

According to GP III, triethyloxonium tetrafluoroborate (0.13 g, 0.70 mmol) was reacted with 2f (0.16

g, 0.35 mmol) in 4 mL DCM:CH₃CN (1:1) for 24 hours. Filtration of the solid precipitate gave **12/(2,4)/EBF** as yellow solid (0.12 g, 52%). FTIR (KBr): $\check{v} = 3443$, 2921, 2851, 1584, 1501, 1470, 1435, 1391, 1320, 1271, 1216, 1194, 1159, 1111, 1083, 1060, 1033, 908, 826, 721, 643, 613, 595, 521, 501 cm⁻¹.¹H NMR (600 MHz, CDCl₃) $\delta = 8.49$ (s, 1H), 7.99 (s, 1H), 7.43 (d, J = 9.0 Hz, 1H), 6.53 (d, J = 9.0 Hz, 1H), 6.40 (d, J = 2.4 Hz, 1H),

4.33 - 4.31 (m, 2H), 4.01 - 3.96 (m, 6H), 3.31 - 3.28 (m, 2H), 1.87 - 1.82 (m, 2H), 1.81 - 1.76 (m, 2H), 1.49 - 1.41 (m, 8H), 1.38 - 1.27 (m, 31H), 0.89 - 0.86 (m, 6H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 171.1$, 164.6, 161.1, 140.1, 131.61, 131.56, 116.6, 106.7, 99.6, 69.2, 68.7, 57.2, 48.3, 32.1, 29.9, 29.85, 29.80, 29.78, 29.6, 29.5, 29.3, 29.0, 27.4, 26.1, 22.9, 14.3, 12.9 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₃₇H₆₄NO_{2⁺} ([M]⁺): 554.4932; Found: 554.4933.

(E)-4-(3-(dodecyloxy)benzylidene)-1-methyl-3,4-dihydro-2H-pyrrolium iodide (12/m/MI):

According to GP III, methyl iodide (13 µL, 0.21 mmol) was reacted with 2d (36 mg, 0.11 mmol) in 1

mL DCM:CH₃CN (1:3) for 24 hours. Filtration of the solid precipitate gave **12/m/MI** as yellow solid (21 mg, 40%). FTIR (KBr): $\breve{v} = 3489$, 3422, 2954, 2922, 2851, 1616, 1594, 1576, 1494, 1457, 1385, 1331, 1309, 1264, 1206, 1181, 1158, 1093, 1030, 954, 909, 888, 787, 721, 684, 501, 463 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 9.78$ (s, 1H), 7.81 (s, 1H), 7.34 – 7.32 (m, 1H), 7.09 (d, J = 7.8 Hz, 1H),

6.98 (s, 2H), 4.47 - 4.45 (m, 2H), 3.94 - 3.92 (m, 2H), 3.88 (s, 3H), 3.40 - 3.34 (m, 2H), 1.78 - 1.76 (m, 4H), 1.47 - 1.42 (m, 2H), 1.35 - 1.27 (m, 14H), 0.89 - 0.87 (m, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 173.4$, 159.7, 146.0, 135.7, 135.1, 130.4, 123.5, 118.5, 116.7, 68.5, 60.7, 41.6, 32.1, 29.85, 29.81, 29.80, 29.8, 29.6, 29.5, 29.4, 27.7, 26.2, 22.9, 14.3 ppm. HRMS (ESI): Exact mass calculated for C₂₄H₃₈NO⁺ ([M]⁺): 356.2948; Found: 356.2968.

(E)-4-benzylidene-1-dodecyl-3,4-dihydro-2H-pyrrolium bromide (PhC12Br):

According to GP III, *n*-bromododecane (0.38 mL, 1.59 mmol) was reacted with previously $\begin{array}{c} C_{12}H_{25} \\ \hline N \\ Br \end{array}$ synthesized (*E*)-4-benzylidene-3,4-dihydro-2H-pyrrole⁹ (0.11 g, 0.72 mmol) in 4 mL DCM:CH₃CN (1:3) in an inert atmosphere and allowed to heat at 60 °C for 72 hours. Filtration of the solid precipitate gave **PhC12Br** as brown soft solid (0.14 g, 47%). FTIR (KBr): $\breve{v} = 3476$, 2955, 2922, 2852, 1622, 1595, 1574, 1493, 1470, 1457, 1388, 1357, 1327, 1192, 1182, 1104, 1029, 1003, 935, 895, 801, 773, 723,

693, 504, 435 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ = 10.00 (s, 1H), 7.96 (s, 1H), 7.53 – 7.52 (m, 2H), 7.46 – 7.41 (m, 3H), 4.50 – 4.48 (m, 2H), 4.18 – 4.16 (m, 2H), 3.39 – 3.38 (m, 2H), 1.88 – 1.83 (m, 2H), 1.35 – 1.23 (m, 18H), 0.89 – 0.86 (m, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 172.8, 146.2, 135.5, 134.0, 131.9, 131.2, 129.4, 58.0, 53.9, 45.3, 32.0, 29.7, 29.6, 29.5, 29.4, 29.1, 27.5, 27.1, 26.5, 24.4, 22.8, 14.2 ppm. HRMS (ESI): Exact mass calculated for C₂₃H₃₆N⁺ ([M]⁺): 326.2842; Found: 326.2863.

(*E*)-4-(2,4-bis(tetradecyloxy)benzylidene)-1-methyl-3,4-dihydro-2*H*-pyrrolium iodide (14/(2,4)/MI):

According to GP III, methyl iodide (31 µL, 0.50 mmol) was reacted with 2j (0.14 g, 0.25 mmol) in 2

mL DCM:CH₃CN (1:3) for 24 hours. Filtration of the solid precipitate gave **14/(2,4)/MI** as yellow solid (0.11 g, 64%). FTIR (KBr): \check{v} = 3436, 2947, 2920, 2850, 1617, 1594, 1560, 1511, 1471, 1423, 1382, 1312, 1275, 1259, 1178, 1161, 1120, 1036, 1024, 1013, 896, 835, 811, 797, 719, 610, 588, 540, 494 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 9.07 (s, 1H), 8.03 (s, 1H), 7.45 (d, *J* = 8.8 Hz, 1H), 6.54 (dd, *J* = 8.8, 2.0 Hz, 1H), 6.41 (d, *J* = 2.0 Hz, 1H),

4.47 - 4.44 (m, 2H), 4.02 - 3.96 (m, 4H), 3.86 (s, 3H), 3.35 - 3.32 (m, 2H), 1.87 - 1.77 (m, 4H), 1.47

-1.42 (m, 4H), 1.31 - 1.26 (m, 40H), 0.89 - 0.86 (m, 6H) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta =$ 172.5, 164.6, 161.0, 140.0, 131.6, 131.2, 116.4, 106.7, 99.5, 69.1, 68.7, 60.1, 41.3, 32.1, 29.88, 29.86, 29.83, 29.77, 29.7, 29.54, 29.53, 29.49, 29.2, 29.0, 28.0, 26.1, 22.9, 14.3 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aromatic region. HRMS (ESI): Exact mass calculated for C₄₀H₇₀NO_{2⁺} ([M]⁺): 596.5401; Found: 596.5372.

(E)-1-methyl-4-(3,4,5-tris(hexadecyloxy)benzylidene)-3,4-dihydro-2H-pyrrolium iodide (16/3/MI):

According to GP III, methyl iodide (28 µL, 0.45 mmol) was reacted with 2l (0.20 g, 0.22 mmol) in 2

mL DCM:CH₃CN (1:3) for 24 hours. Filtration of the solid precipitate gave **16/3/MI** as yellow solid (0.88 g, 78%). FTIR (KBr): $\breve{v} = 3400$, 2955, 2917, 2849, 1612, 1571, 1502, 1467, 1437, 1379, 1339, 1252, 1176, 1124, 987, 920, 815, 720, 633, 498 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) $\delta = 9.81$ (s, 1H), 7.75 (s, 1H), 6.73 (s, 2H), 4.37 – 4.35 (m, 2H), 4.05 (t, J = 6.6 Hz, 2H), 3.96 (t, J = 6.6 Hz, 4H), 3.84 (s, 3H), 3.37 – 3.36 (m, 2H), 1.83 – 1.79 (m, 4H), 1.76 – 1.71 (m, 3H), 1.50 – 1.45 (m, 6H), 1.38 – 1.26 (m, 71H), 0.88 (t, J = 7.2 Hz, 9H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta =$ 173.5, 153.6, 147.2, 142.7, 133.2, 128.8, 110.3, 74.0, 69.7, 60.0, 41.1, 32.1, 30.6, 30.0, 29.90, 29.89, 29.8, 29.7, 29.6, 29.5 (2C), 26.3, 26.2, 22.9, 14.4 ppm. Total count of ¹³C is less than expected due to the merging of signals in the aliphatic region. HRMS (ESI): Exact mass calculated for C₆₀H₁₁₀NO₃⁺ ([M]⁺): 892.8480; Found: 892.8478.

References:

¹ Pathak, S. K.; Gupta, M.; Pal, S. K.; Achalkumar, A. S. ChemistrySelect 2016, 1, 5107.

² Reddy, K. R.; Lobo, N. P.; Narasimhaswamy, T. *Journal of Physical Chemistry B* 2016, 120, 6897.

³ He, Q.; Han, Y.; Wang, Y.; Huang, Z. T.; Wang, D. X. Chem. Eur. J. **2014**, 20, 1.

⁴ Pradhan, B.; Pathak, S. K.; Gupta, R. K.; Gupta, M.; Pal, S. K.; Achalkumar, A. S. *J. Mater. Chem. C* **2016**, *4*, 6117.

⁵ Nummelin, S.; Liljestrçm, V.; Saarikoski, E.; Ropponen, J.; Nykänen, A.; Linko, V.; Seppälä, J.; Hirvonen, J.; Ikkala, O.; Bimbo, L. M.; Kostiainen, M. A. *Chem. Eur. J.* **2015**, *21*, 14433.

⁶ Vela, S.; Berrocal, J. A.; Atienza, C; Meijer, E. W.; Martin, N. *Chem Commun.* **2017**, *53*, 4084.

⁷ Veerabhadraswamy, B. N.; Dambal, H. K.; Rao, D. S. S.; Yelamaggad, C. V. *ChemPhysChem* **2016**, *17*, 2225.

⁸ Charisiadis, A.; Nikolaou, V.; Karikis, K.; Giatagana, C.; Chalepli, K.; Ladomenou, K.; Biswas, S.; Sharma, G. D.; Coutsolelos, A. G. *New J. Chem.* **2016**, *40*, 5930.

⁹ Mandal, S.; Mahato, S.; Jana, C. K. Org. Lett. **2015**, *17*, 3762.

1b

~4.010 -3.999 ~3.988

1d

-130.30-123.91< 119.27< 119.11

1f

Ethyl 3,5-dihydroxybenzoate

 ~ 108.74 ~ 108.15

Ethyl 3,5-dihydroxybenzoate

2d

2f

2g

12/p/EBF

