Hypervalent Iodine Mediated Synthesis of Imidazo[1,2-a] pyridine Ethers: Consecutive Methylene Linkage and Insertion of Ethylene Glycol

Rahul Kumar^a, Deepa Rawat^a, Rashmi Semwal^a, Gourav Bhadani^a and Subbarayappa Adimurthy^{*a}

Academy of Scientific & Innovative Research, Ghaziabad. CSIR–Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar-364 002. Gujarat (INDIA). *E-mail: <u>adimurthy@csmcri.res.in</u>

S.No	Content	Page number
1	Experimental Section	S2
2	Characterization data	S2-10
3	Refereacnce	S10
4	¹ H & ¹³ C- NMR Spectra of all products	S11-S40
5	HRMS Spectra copy	S41-S55

Table of Content

1-Experimental Section

All commercially available chemicals and reagents were used without any further purification unless otherwise indicated. ¹H and ¹³C NMR spectra were recorded at 600, 500, 200 MHz and 150, 125, 50 MHz, respectively. The spectra were recorded in CDCl₃ as solvent. Multiplicity was indicated as follows: s (singlet); d (doublet); t (triplet); m (multiplet); dd (doublet of doublets), etc. and coupling constants (J) were given in Hz. Chemical shifts are reported in ppm relative to TMS as an internal standard. The peaks around delta values of ¹H NMR (7.2), and ¹³C NMR (77.0) are correspond to deuterated solvent chloroform respectively. Mass spectra were obtained using electron impact (EI) ionization method. Progress of the reactions was monitored by thin layer chromatography (TLC). All products were purified through column chromatography using silica gel 100-200 mesh size using hexane/ethyl acetate as eluent unless otherwise indicated.

General procedure for 3a

A clean washed boiling tube equipped with a magnetic stir bar was charged with 2phenylimidazo[1,2-a]pyridine **1a** (0.0485 g, 0.25 mmol), (Diacetoxyiodo)benzene PIDA **2a** (0.1207 g, 0.375 mmol), and ethylene glycol (1mL), the above mixture was stirred for 24h at 100°C temperature. After completion of the reaction, the mixture was poured into 10 mL of NaHCO₃ solution. The product was extracted with ethyl acetate (10 mL \times 3) and dried with anhydrous Na₂SO₄. Removal of the solvent under reduced pressure, the left out residue was purified through column chromatography using silica gel (80% EtOAc/hexane) to obtain 2-((2-phenylimidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol **3a** in 74 % yield (0.0495g).

2-Characterization data

2-((2-phenylimidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3a)

```
HO
```

(Eluent: 80% EtOAc/hexane); 74% yield (49.5mg); yellow sticky liquid ¹H NMR (500 MHz, CDCl₃) δ 8.22 (d, J = 6.6 Hz, 1H), 7.76 (d, J = 7.7 Hz, 2H), 7.67 (d, J = 8.9 Hz, 1H), 7.47 (t, J = 7.5 Hz, 2H), 7.40 (dd, J = 10.5, 4.1 Hz, 1H), 7.24 (d, J = 8.6 Hz, 1H), 6.87 (t, J = 6.7 Hz, 1H), 4.98 (s, 2H), 3.79 (t, J = 5.0 Hz, 2H), 3.66 (t, J = 5.0 Hz, 2H).

¹³C NMR (150MHz, CDCl₃) δ 145.74, 145.35, 134.06, 128.77, 128.71, 128.14, 125.23, 124.32, 117.61, 116.70, 112.63, 71.30, 62.40, 61.86. HRMS(ESI-TOF)m/z: calcd for C₁₆H₁₆N₂O₂[M +H]⁺: 269.1285; found: 269.1309. IR (neat): v = 3407, 2923, 1499, 1076, 1019 cm⁻¹.

2-((2-(4-chlorophenyl)imidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3b)

(Eluent: 70% EtOAc/hexane); 70% yield (52.8 mg); brown solid m.p; 135-137°C ¹H NMR (200 MHz, CDCl₃) δ 8.18 (d, J = 6.9 Hz, 1H), 7.65 (t, J = 7.9 Hz, 3H), 7.40 (d, J = 8.5 Hz, 2H), 7.27 (t, J = 5.7 Hz, 1H), 6.86 (t, J = 6.8 Hz, 1H), 4.90 (s, 2H), 3.80 (t, J=4.0 Hz 2H), 3.64 (d, J = 4.6 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 145.33, 144.52,

134.21, 132.50, 129.91, 128.93, 125.52, 124.26, 117.63, 116.85, 112.86, 71.43, 62.27, 61.91. HRMS(ESI-TOF)m/z: calcd for $C_{16}H_{15}N_2O_2Cl[M+H]^+$: 303.0895; found: 303.0919. IR (KBr): v = 3496, 2931, 1364, 1226, 1092 cm⁻¹.

2-((2-(4-bromophenyl)imidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3c)

(Eluent: 80% EtOAc/hexane); 65% yield (56.2 mg); brown solid m.p; 142-144°C ¹H NMR (600 MHz,CDCl₃) δ 8.19 (d, J = 6.9 Hz, 1H), 7.67 – 7.62 (m, 3H), 7.60 – 7.57 (m, 2H), 7.29 – 7.25 (m, 1H), 6.89 (t, J = 6.7 Hz, 1H), 4.93 (s, 2H), 3.80 (t, J = 6.0 Hz, 1H)

2H), 3.66 (t, J = 6.0 Hz, 2H), ¹³C NMR (50 MHz, CDCl₃) δ 145.36, 143.83, 132.98, 131.82, 130.16, 125.43, 124.18, 122.40, 120.13, 117.64, 112.79, 71.32, 62.23, 61.88. HRMS(ESI-TOF)m/z: calcd for C₁₆H₁₅N₂O₂Br [M +H]⁺: 349.0390 ; found: 349.0363. IR (KBr): v = 3401, 2921, 1509, 1101, 753 cm⁻¹.

4-(3-((2-hydroxyethoxy)methyl)imidazo[1,2-a]pyridin-2-yl)benzonitrile (3d)

(Eluent: 80% EtOAc/hexane); 62% yield (45.4 mg); brown solid m.p; 140-142°C ¹H NMR(600 MHz,CDCl₃) δ 8.20 (d, J = 6.6 Hz, 1H), 7.88 (d, J = 8.2 Hz, 2H), 7.71 (d, J = 7.9 Hz, 2H), 7.68 (d, J = 9.0 Hz, 1H), 7.33 – 7.29 (m, 1H), 6.93 (t, J = 6.7 Hz, 1H), 4.93 (s, 2H), 3.83 (t, J = 6.0 Hz, 2H), 3.70 (t, J = 6.0 Hz, 2H), ¹³C NMR (150 MHz, CDCl₃) δ 145.52, 143.48, 138.59, 132.43, 129.04, 126.02, 124.31, 118.95, 117.84, 113.27, 111.52, 105.41, 71.76, 62.11, 61.88. HRMS(ESI-TOF)m/z: calcd for C₁₇H₁₅N₃O₂[M+H]⁺ : 294.1237; found: 294.1219. IR (KBr): v = 3417, 2927, 2343, 1261, 1104 cm⁻¹.

2-((8-methyl-2-phenylimidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3e)

(Eluent: 80% EtOAc/hexane); 55% yield (38.7 mg); yellow semi solid; ¹H NMR(200 MHz,CDCl₃) δ 8.02 (d, J = 6.8 Hz, 1H), 7.75 – 7.65 (m, 2H), 7.46 – 7.30 (m, 3H), 7.02 – 6.94 (m, 1H), 6.72 (t, J = 6.8 Hz, 1H), 4.88 (s, 2H), 3.68 (dt, J = 5.3, 2.2 Hz, 2H), 3.55 (dt, J = 3.7, 2.4 Hz, 2H), 2.60 (s, 3H). ¹³C NMR (150MHz, CDCl₃). δ 145.65,

145.13, 134.21, 128.96, 128.61, 127.99, 127.38, 124.13, 122.17, 117.16, 112.63, 71.28, 62.36,

61.61, 17.22. HRMS(ESI-TOF)m/z: calcd for $C_{17}H_{18}N_2O_2[M + Na]^+$: 305.1260; found: 305.1286. IR (neat): v = 3412, 3050, 1424, 1269, 728 cm⁻¹.

2-((2-(4-ethylphenyl)-8-methylimidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3f)

(Eluent: 20% EtOAc/hexane); 71% yield (55.0 mg); sticky liquid; ¹H NMR(500 MHz,CDCl₃) δ 8.06 (d, J = 6.8 Hz, 1H), 7.66 (d, J = 8.1 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 6.8 Hz, 1H), 6.77 (t, J = 6.8 Hz, 1H), 4.93 (s, 2H), 3.75 (t, J = 6.0 Hz, 2H), 3.61 (t, J = 6.0 Hz, 2H), 2.71 (q, J=6.0 2H), 2.66 (s, 3H), 1.27 (t, J = 7.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 147.07, 146.84, 145.54, 132.95, 130.24, 129.56, 128.88, 125.31,

123.37, 118.09, 113.94, 72.41, 63.87, 63.24, 30.11, 18.58, 17.01. HRMS(ESI-TOF)m/z: calcd for $C_{19}H_{22}N_2O_2[M + Na]^+$: 333.1573; found: 333.1585. IR (neat): v = 3428, 2923, 1461, 1023, 808 cm⁻¹.

2-((2-(4-methoxyphenyl)-8-methylimidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3g)

HO

(Eluent: 80% EtOAc/hexane); 65% yield (50.7 mg); brown liquid; ¹H NMR(500 MHz,CDCl₃) δ 8.00 (d, J = 6.7 Hz, 1H), 7.64 (d, J = 8.7 Hz, 2H), 7.01 – 6.92 (m, 3H), 6.72 (t, J = 6.8 Hz, 1H), 4.88 (s, 2H), 3.80 (s, 3H), 3.80 (t, J = 5.0 Hz, 2H), 3.57 (t, J = 6.8 Hz, 1H), 4.88 (s, 2H), 3.80 (s, 3H), 3.80 (t, J = 5.0 Hz, 2H), 3.57 (t, J = 6.8 Hz, 1H), 4.88 (s, 2H), 3.80 (s, 3H), 3.80 (t, J = 5.0 Hz, 2H), 3.57 (t, J = 6.8 Hz, 1H), 4.88 (s, 2H), 3.80 (s, 3H), 3.80 (t, J = 5.0 Hz, 2H), 3.57 (t, J = 6.8 Hz, 1H), 4.88 (s, 2H), 3.80 (s, 3H), 3.80 (t, J = 5.0 Hz, 2H), 3.57 (t, J = 6.8 Hz, 1H), 4.88 (s, 2H), 3.80 (s, 3H), 3.80 (t, J = 5.0 Hz, 2H), 3.57 (t, J = 6.8 Hz, 1H), 4.88 (s, 2H), 3.80 (s, 3H), 3.80 (t, J = 5.0 Hz, 2H), 3.57 (t, J = 6.8 Hz, 1H), 4.88 (s, 2H), 3.80 (s, 3H), 3.80 (t, J = 5.0 Hz, 2H), 3.57 (t, J = 6.8 Hz, 1H), 4.88 (s, 2H), 3.80 (s, 3H), 3.80 (t, J = 5.0 Hz, 2H), 3.57 (t, J = 6.8 Hz, 1H), 4.88 (s, 2H), 3.80 (s, 3H), 3.80 (t, J = 5.0 Hz, 2H), 3.57 (t, J = 6.8 Hz, 1H), 4.88 (s, 2H), 3.80 (s, 3H), 3.80 (t, J = 5.0 Hz, 2H), 3.57 (t, J = 6.8 Hz, 1H), 4.88 (s, 2H), 3.80 (s, 3H), 3.80 (t, J = 5.0 Hz, 2H), 3.57 (t, J = 6.8 Hz, 1H), 4.88 (s, 2H), 3.80 (s, 3H), 3.80 (s, 3H

5.0 Hz, 2H), 2.60 (s, 3H). ¹³C NMR (125MHz, CDCl₃) δ 160.98, 147.08, 146.72, 131.46, 128.85, 128.27, 125.25, 123.26, 117.76, 115.51, 113.91, 72.35, 63.91, 63.32, 56.76, 18.58 HRMS(ESI-TOF)m/z: calcd for C₁₈H₂₀N₂O₃[M +H]⁺: 313.1547; found: 313.1533. IR (neat): v = 3518, 3006, 1361, 1227, 534 cm⁻¹.

2-((2-(4-chlorophenyl)-8-methylimidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3h)

(Eluent: 80% EtOAc/hexane); 65% yield (51.3 mg); brown liquid; ¹H NMR(200 MHz,CDCl₃) δ 8.05 (d, J = 6.8 Hz, 1H), 7.69 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 7.05 (d, J = 6.8 Hz, 1H), 6.79 (t, J = 6.8 Hz, 1H), 4.89 (s, 2H), 3.79 – 3.72 (m, 2H), 3.64 – 3.57 (m, 2H), 2.65 (s, 3H). ¹³C NMR (150MHz, CDCl₃) δ 145.38, 142.56,

134.08, 132.80, 130.13, 128.76, 127.64, 123.52, 121.30, 114.56, 112.78, 71.26, 62.36, 61.88, 17.09. HRMS(ESI-TOF)m/z: calcd for $C_{17}H_{17}N_2O_2Cl[M+H]^+$: 317.1051; found: 317.1055. IR (neat): v = 3400, 2942, 1458, 1039 cm⁻¹.

2-((2-(m-tolyl)imidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3i)

(Eluent: 80% EtOAc/hexane); 61% yield (43.0 mg); yellow solid m.p; 168-170°C ¹H NMR(500 MHz,CDCl₃) δ 8.10 (d, J = 6.9 Hz, 1H), 7.76 (d, J = 7.2 Hz, 2H), 7.46 (dd, J = 15.5, 7.9 Hz, 3H), 7.39 (t, J = 7.4 Hz, 1H), 6.72 (d, J = 7.0 Hz, 1H), 4.97 (s,

2H), 3.78 (t, J = 5.0 Hz, 2H), 3.64 (t, J = 5.0 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (150MHz, CDCl₃) δ 145.57, 145.20, 138.42, 133.64, 129.51, 129.03, 128.58, 125.81, 125.47, 124.43, 117.28, 116.77, 112.73, 71.36, 63.65, 61.70, 21.55. HRMS(ESI-TOF)m/z: calcd for C₁₇H₁₈N₂O₂[M+H]⁺ : 283.1441; found: 283.1450. IR (KBr): v = 3426, 2924, 1367, 1099, 802 cm⁻¹.

2-((2-(o-tolyl)imidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3j)

(Eluent: 80% EtOAc/hexane); 60% yield (42.3 mg); yellow semi solid, ¹H NMR(500 MHz,CDCl₃) δ 8.26 (d, J = 6.8 Hz, 1H), 7.66 (d, J = 9.1 Hz, 1H), 7.33 – 7.29 (m, 3H), 7.29 – 7.24 (m, 2H), 6.93 – 6.87 (m, 1H), 4.77 (s, 2H), 3.71 (t, J = 4.4 Hz, 2H), 3.51

^{HO} (t, J = 4.0 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (150MHz, CDCl₃) δ 145.66, 145.09, 137.71, 132.97, 130.78, 130.49, 128.61, 125.57, 125.44, 124.62, 117.58, 117.34, 112.74, 71.06, 63.69, 62.13, 20.16. HRMS(ESI-TOF)m/z: calcd for C₁₇H₁₈N₂O₂[M+K]⁺ : 321.1000; found: 321.0993. IR (neat): v = 3414, 2922, 1458, 1101, 754 cm⁻¹.

4-(3-((2-hydroxyethoxy)methyl)-7-methylimidazo[1,2-a]pyridin-2-yl)benzonitrile (3k)

(Eluent: 80% EtOAc/hexane); 66% yield (50.6 mg); brown semi solid; ¹H NMR(600 MHz,CDCl₃) δ 8.00 (d, J = 6.5 Hz, 1H), 7.79 (d, J = 6.9 Hz, 2H), 7.63 (d, J = 7.7 Hz, 2H), 7.36 (s, 1H), 6.69 (d, J = 7.3 Hz, 1H), 4.83 (s, 2H), 3.75 (t, J = 6.0 Hz, 2H), 3.61 (t, J = 6.0 Hz, 2H), 2.45 (s, 3H). ¹³C NMR (150MHz, CDCl₃) δ 146.36, 146.01, 138.85, 137.12, 132.41, 128.96, 123.43, 119.04, 117.32, 116.18, 115.91, 111.36, 71.57, 62.16, 61.95, 21.50. HRMS(ESI-TOF)m/z: calcd for C₁₈H₁₇N₃O₂[M +H]⁺ : 308.1394; found: 308.1434. IR (neat): v = 3444, 3056, 2258, 1264, 904 cm⁻¹.

2-((7-chloro-2-(4-chlorophenyl)imidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3l)

(Eluent: 80% EtOAc/hexane); 62% yield (52.0mg); yellow solid; m.p;155-157°C ¹H NMR(600 MHz,CDCl₃) δ 8.07 (d, J = 7.1 Hz, 1H), 7.60 (dd, J = 10.1, 8.4 Hz, 3H), 7.37 (d, J = 7.4 Hz, 2H), 6.80 (d, J = 7.8 Hz, 1H), 4.86 (d, J = 1.6 Hz, 2H), 3.74 (t, J = 6.0 Hz, 2H), 3.59 (t, J = 6.0 Hz, 2H), ¹³C NMR (150MHz, CDCl₃)) δ 145.32, 143.65, 134.54, 132.02, 129.88, 129.04, 126.92, 122.34, 121.13, 117.94, 117.48, 71.57, 62.20, 61.92. HRMS(ESI-TOF)m/z: calcd for C₁₆H₁₄N₂O₂Cl₂[M+H]⁺ : 337.0505; found: 337.0533. IR (KBr): v = 3403, 2926, 1406, 1095, 804 cm⁻¹.

2-((7-chloro-2-phenylimidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3m)

(Eluent: 80% EtOAc/hexane); 62% yield (46.8 mg); yellow solid, m.p; 158-160°C ; ¹H NMR(600 MHz,CDCl₃) δ 8.15 (d, J = 7.4 Hz, 1H), 7.72 (d, J = 7.8 Hz, 2H), 7.66 (d, J = 1.5 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.40 (t, J = 7.3 Hz, 1H), 6.87 – 6.84 (m, 1H), 4.95 (s, 2H), 3.79 (t, J = 6.0 Hz, 2H), 3.64 (t, J = 6.0 Hz, 2H). ¹³C NMR(150 MHz,

CDCl₃) δ 146.42, 145.06, 133.56, 131.87, 128.79, 128.72, 128.41, 124.77, 117.00, 116.41, 114.23, 71.39, 62.31, 61.88. HRMS(ESI-TOF)m/z: calcd for C₁₆H₁₅N₂O₂Cl[M+K]⁺ : 341.0454; found: 341.0467. IR (KBr): ν = 3420, 2923, 1375, 1225, 1032, cm⁻¹.

2-((8-chloro-2-(2-chlorophenyl)imidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3n)

(Eluent: 80% EtOAc/hexane); 60% yield (50.4mg); yellow oily liquid;. ¹H NMR(500 MHz,CDCl₃) δ 8.21 (d, J = 7.2 Hz, 1H), 7.66 (s, 1H), 7.53 – 7.47 (m, 2H), 7.36 (dd, J = 6.4, 3.0 Hz, 2H), 6.87 (d, J = 7.1 Hz, 1H), 4.80 (s, 2H), 3.70 (t, J = 5.0 Hz, 2H), 3.49 (t, J = 5.0 Hz, 2H), ¹³C NMR (125MHz, CDCl₃) δ 146.45, 144.92, 135.08, 133.98,

133.88, 133.28, 131.36, 131.25, 128.23, 126.59, 119.81, 117.94, 115.72, 72.56, 63.85, 63.03HRMS(ESI-TOF)m/z: calcd for C₁₆H₁₄N₂O₂Cl₂[M+H]⁺ : 337.0505; found: 337.0701. IR (neat): v = 3505, 2928, 1362, 1224, 690 cm⁻¹.

2-((2-(2-chlorophenyl)-8-methylimidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (30)

(Eluent: 80% EtOAc/hexane); 55% yield (43.4 mg); brown semi solid; ¹H NMR(600 MHz,CDCl₃) δ 8.13 (d, J = 6.8 Hz, 1H), 7.72 (t, J = 7.4 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.29 – 7.24 (m, 1H), 7.17 (d, J=6.0 Hz 1H), 7.06 (d, J = 6.8 Hz, 1H), 6.80 (t, J = 6.9

^{HO} Hz, 1H), 4.88 (s, 2H), 3.71(t, J = 6.0 Hz, 2H), 3.54 (t, J = 6.0 Hz, 2H), 2.66 (s, 3H), ¹³C NMR (150MHz, CDCl₃) δ 160.52, 158.88, 146.17, 139.01, 132.40, 129.99, 127.62, 124.50, 123.92, 122.33, 118.45, 115.86, 112.68, 70.84, 62.45, 61.76, 17.13. HRMS(ESI-TOF)m/z: calcd for C₁₇H₁₇N₂O₂Cl[M+H]⁺ : 317.1051; found: 317.1055. IR (neat): v = 3448, 2923, 1263, 742 cm⁻¹.

2-((6-bromo-2-phenylimidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3p)

(Eluent: 80% EtOAc/hexane); 68% yield (58.8mg); brown solid; m.p;146-148°C ¹H NMR(600 MHz,CDCl₃) δ 8.30 (s, 1H), 7.66 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 9.6 Hz, 1H), 7.40 (t, J = 7.7 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 7.26 – 7.21 (m, 1H), 4.88 (s, 2H), 3.74 (t, J = 4.3 Hz, 2H), 3.60(t, J = 6.0 Hz, 2H), ¹³C NMR (125MHz, CDCl₃) δ 144.01, 143.43, 133.96, 131.80, 131.47, 128.85, 126.15, 124.10, 123.61, 116.67, 111.62, 69.83, 61.43, 60.56. HRMS(ESI-TOF)m/z: calcd for $C_{16}H_{15}N_2O_2Br[M+Na]$ + :369.0209 ; found: 369.0215. IR (KBr): $v = 3441, 2927, 1258, 1093, 793 \text{ cm}^{-1}$.

2-((2-(2-bromophenyl)-8-chloroimidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3q)

HO CI

(Eluent: 80% EtOAc/hexane); 70% yield (66.3 mg); yellow semi solid; ¹H NMR(500 MHz,CDCl₃) δ 8.15 (d, J = 7.2 Hz, 1H), 7.67 – 7.58 (m, 2H), 7.42 (dd, J = 13.5, 6.8 Hz, 1H), 7.34 (t, J = 7.4 Hz, 1H), 7.24 (d, J = 7.7 Hz, 1H), 6.83 (d, J = 7.2 Hz, 1H),

^{HO} 4.73 (s, 2H), 3.64 (t, J = 5.0 Hz, 2H), 3.42 (t, J = 5.0 Hz, 2H), ¹³C NMR (125MHz, CDCl₃) δ 146.74, 146.31, 136.06, 134.41, 134.34, 133.87, 131.57, 128.75, 128.26, 126.56, 119.46, 118.05, 115.76, 111.11, 72.45, 63.89, 63.11. HRMS(ESI-TOF)m/z: calcd for C₁₆H₁₄N₂O₂ClBr[M+Na]⁺: 402.9819; found: 402.9837. IR (neat): v = 3367, 2924, 1258, 1022, 803 cm⁻¹.

$2 \hbox{-} ((8 \hbox{-} chloro \hbox{-} 2 \hbox{-} (2 \hbox{-} fluorophenyl) imidazo [1,2 \hbox{-} a] pyridin \hbox{-} 3 \hbox{-} yl) methoxy) ethan \hbox{-} 1 \hbox{-} ol(3r)$

^{HO} 1.8 Hz, 1H), 4.88 (s, 2H), 3.74 (t, J = 5.0 Hz, 2H), 3.57 (t, J = 5.0 Hz, 2H), ¹³C NMR (125MHz, CDCl₃) δ 161.92, 159.95, 146.82, 141.52, 133.49, 131.77, 131.71, 126.57, 125.99, 122.92, 119.96, 117.80, 117.43, 72.61, 63.77, 63.09. HRMS(ESI-TOF)m/z: calcd for C₁₆H₁₄N₂O₂Cl F[M +H]⁺ : 343.0620; found: 343.0614. IR (neat): v = 3522, 3004, 1367, 1235, 531 cm⁻¹.

2-((6-bromo-8-methyl-2-phenylimidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3s)

(Eluent: 80% EtOAc/hexane); 68% yield (61.2 mg); brown semi solid; ¹H NMR(600 MHz,CDCl₃) δ 8.24 (s, 1H), 7.74 (d, J = 7.9 Hz, 2H), 7.47 (t, J = 7.5 Hz, 2H), 7.40 (t, J = 7.4 Hz, 1H), 7.15 (s, 1H), 4.93 (s, 2H), 3.79 (t, J = 6.0 Hz, 2H), 3,64 (t, J = 6.0 Hz, 2H), 2.66 (s, 3H), ¹³C NMR (150MHz, CDCl₃) δ 145.98, 145.92, 144.29, 139.96,

133.87, 128.89, 128.77, 127.35, 122.27, 117.43, 107.28, 71.29, 62.38, 61.91, 17.06. HRMS(ESI-TOF)m/z: calcd for $C_{17}H_{18}N_2O_2Br[M+Na]$ + :361.0546 ; found: 361.2842. IR (neat): v = 3405, 2924, 1254, 1034, 805 cm⁻¹.

2-((2-(2-fluorophenyl)-8-methylimidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3t)

(Eluent: 20% EtOAc/hexane); 60% yield (45.0 mg); thick liquid; ¹H NMR(600 MHz,CDCl₃) δ 8.13 (d, J = 6.8 Hz, 1H), 7.56 – 7.53 (m, 1H), 7.49 (dd, J = 5.7, 3.5 Hz, 1H), 7.35 (dd, J = 5.7, 3.5 Hz, 2H), 7.07 (d, J = 6.8 Hz, 1H), 6.81 (t, J = 6.7 Hz, 1H), 4.80 (s, 2H), 3.67 (t, J = 6.0 Hz, 2H), 3.46 (t, J = 6.0 Hz, 2H), 2.65 (s, 3H), ¹³C

NMR (150MHz, CDCl₃) δ 145.84, 142.46, 133.99, 133.40, 132.80, 129.76, 127.76, 126.84, 124.07, 122.49, 118.31, 112.82, 70.88, 62.61, 61.78, 17.25. HRMS(ESI-TOF)m/z: calcd for C₁₇H₁₇N₂O₂F[M+Na]⁺ :323.1166 ; found: 323.1176. IR (neat): v = 3461, 2923, 1363, 1092, 801 cm⁻¹.

2-((2-(2-bromophenyl)imidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3u)

(Eluent: 80% EtOAc/hexane); 71% yield (61.4 mg); brown semi solid; ¹H NMR (600 MHz, CDCl₃) δ 8.27 (d, J = 6.7 Hz, 1H), 7.70 – 7.67 (m, 2H), 7.49 (d, J = 7.2 Hz, 1H), 7.40 (d, J = 7.4 Hz, 1H), 7.31 – 7.27 (m, 2H), 6.90 (t, J = 6.5 Hz, 1H), 4.81 (s, 2H), 3.68 (t, J = 6.0 Hz, 2H), 3.48 (t, J = 6.0 Hz, 2H), ¹³C NMR (50MHz, CDCl₃) δ

145.08, 144.43, 135.03 132.92, 132.58, 129.97, 127.26, 125.26, 124.79, 123.92, 117.75, 117.69 112.74, 71.03, 62.52, 61.58, HRMS(ESI-TOF)m/z: calcd for $C_{16}H_{15}N_2O_2Br[M+Na]^+$: 369.0209; found: 369.0237. IR (neat): v = 3407, 2929, 1265, 1102, 741 cm⁻¹.

2-((2-(thiophen-2-yl)imidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3v)

(Eluent: 20% EtOAc/hexane); 69% yield (47.2 mg); yellow semi solid; ¹H NMR(200 MHz,CDCl₃) δ 8.19 (d, J = 6.9 Hz, 1H), 7.68 (dd, J = 3.0, 1.3 Hz, 1H), 7.61 (s, 1H), 7.55 (dd, J = 5.0, 1.2 Hz, 1H), 7.42 (dd, J = 5.0, 3.0 Hz, 1H), 7.25 (d, J = 1.6 Hz, 1H), 6.86 (t, J = 6.8 Hz, 1H), 5.01 (s, 2H), 3.80 – 3.73 (m, 2H), 3.69 – 3.62 (m, 2H), ¹³C

NMR (150MHz, CDCl₃) δ 145.27, 141.44, 136.90, 127.69, 126.16, 125.37, 124.13, 123.55, 117.48, 116.35, 112.73, 71.14, 62.16, 61.96. HRMS(ESI-TOF)m/z: calcd for C₁₄H₁₅N₂SO₂[M +Na]⁺:275.0849; found:275.0857. IR (neat): v = 3407, 3055, 1363, 1268, 738 cm⁻¹.

2-((7-chloro-2-(thiophen-2-yl)imidazo[1,2-a]pyridin-3-yl)methoxy)ethan-1-ol (3w)

(Eluent: 80% EtOAc/hexane); 65% yield (50.0 mg); brown liquid ¹H NMR(200 MHz,CDCl₃) δ 8.11 (d, J = 7.3 Hz, 1H), 7.61 (d, J = 1.9 Hz, 1H), 7.44 (dd, J = 3.6, 1.0 Hz, 1H), 7.39 (dd, J = 5.1, 1.0 Hz, 1H), 7.12 (dd, J = 5.1, 3.6 Hz, 1H), 6.82 (dd, J = 7.3, 2.0 Hz, 1H), 5.04 (s, 2H), 3.77 (dd, J = 5.1, 3.4 Hz, 2H), 3.64 (dd, J = 5.0, 3.3 Hz, 2H). ¹³C NMR (50MHz, CDCl₃) δ 145.05, 136.11, 134.68, 132.13, 127.82, 126.46, 126.26, 126.01, 124.60, 116.13, 114.29, 71.16, 61.90, 61.80. HRMS(ESI-TOF)m/z: calcd for C₁₄H₁₃N₂SClO₂[M +Na]⁺:309.0459 ; found:309.0597. IR (neat): v = 3418, 2924, 1362, 1229, 801 cm⁻¹.

2-((6-(p-tolyl)imidazo[2,1-b]thiazol-5-yl)methoxy)ethan-1-ol (4a)

(Eluent: 80% EtOAc/hexane); 70% yield (50.4mg); brown semi solid; ¹H NMR(500 MHz,CDCl₃) δ 7.57 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 4.5 Hz, 1H), 7.26 (d, J = 3.9 Hz, 2H), 6.84 (d, J = 4.4 Hz, 1H), 4.87 (s, 2H), 3.77 (t, J = 5.0 Hz, 2H), 3.62 (t, J = 5.0 Hz, 2H), 2.39 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 148.55, 145.59, 136.45, 130.25,

128.30, 126.77, 117.33, 116.94, 111.55, 70.04, 62.08, 60.83, 20.21. HRMS(ESI-TOF)m/z: calcd for $C_{15}H_{16}N_2SO_2[M + Na]^+$:311.0825; found: 311.0837. IR (neat): v = 3377, 2927, 1263, 1095, 856 cm⁻¹.

2-((6-(4-ethylphenyl)imidazo[2,1-b]thiazol-5-yl)methoxy)ethan-1-ol (4b)

(Eluent: 80% EtOAc/hexane); 71% yield (53.6 mg); brown solid m.p;130-131°C; ¹H NMR(200 MHz,CDCl₃) δ 7.57 (dd, J = 11.5, 6.3 Hz, 3H), 7.28 (d, J = 5.9 Hz, 2H), 6.85 (d, J = 4.5 Hz, 1H), 4.88 (s, 2H), 3.80 (t, J = 4.0 Hz, 2H), 3.64 (t, J = 6.0 Hz, 2H), 2.70 (q, J = 7.6 Hz, 2H), 1.27 (t, J = 3.4 Hz, 3H). ¹³C NMR (150MHz,

CDCl₃) δ 149.48, 146.24, 143.80, 131.46, 128.17, 127.91, 118.68, 118.32, 112.45, 71.42, 63.07, 61.62, 28.67, 15.57. HRMS(ESI-TOF)m/z: calcd for C₁₆H₁₈N₂SO₂[M +Na]⁺ :325.0981 ; found: 325.0996. IR (KBr): v = 3529, 3006, 1368, 1231, 535 cm⁻¹.

2-((6-(4-chlorophenyl)imidazo[2,1-b]thiazol-5-yl)methoxy)ethan-1-ol (4c)

(Eluent: 80% EtOAc/hexane); 62% yield (47.7mg); semi brown solid ¹H NMR(200 MHz,CDCl₃) δ 7.63 (d, J = 8.6 Hz, 2H), 7.54 (d, J = 4.5 Hz, 1H), 7.44 – 7.38 (m, 2H), 6.88 (d, J = 4.5 Hz, 1H), 4.85 (s, 2H), 3.81 (t, J = 4.0 Hz, 2H), 3.64 (t, J = 4.0 Hz, 2H), ¹³C NMR (150MHz, CDCl₃) δ 149.77, 145.31, 133.60, 132.68, 129.10, 128.85,

118.98, 118.04, 112.98, 71.40, 63.01, 61.84. HRMS(ESI-TOF)m/z: calcd for $C_{14}H_{13}N_2SClO_2[M + H]^+$: 309.0459; found: 309.2061. IR (neat): v = 3397, 2921, 1470, 1261, 1097, cm⁻¹.

2-((6-(4-bromophenyl)imidazo[2,1-b]thiazol-5-yl)methoxy)ethan-1-ol (4d)

(Eluent: 80% EtOAc/hexane); 60% yield (52.6 mg); brown solid m.p;120-122°C; ¹H NMR(200 MHz,CDCl₃) δ 7.54 (d, J = 5.8 Hz, 5H), 6.87 (d, J = 4.5 Hz, 1H), 4.84 (s, 2H), 3.78 (dd, J = 5.2, 3.7 Hz, 2H), 3.64 – 3.58 (m, 2H). ¹³C NMR (150MHz, CDCl₃) δ 149.89, 145.49, 133.19, 131.85, 129.44, 121.87, 118.93, 117.97, 113.11, 71.29,

63.07, 61.96. HRMS(ESI-TOF)m/z: calcd for $C_{14}H_{15}N_2SBrO_2[M +H]^+$:355.0110; found: 354.9932. IR (KBr): v = 3359, 2927, 1472, 1092, 804 cm⁻¹.

2-((1H-indazol-1-yl)methoxy)ethan-1-ol) (5a)

(Eluent: 50% EtOAc/hexane); 70% yield (33.6 mg); yellow thick liquid ¹H NMR(500 MHz,CDCl₃) δ 8.04 (s, 1H), 7.76 (d, J = 8.1 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.45 (dd, J = 11.3, 4.0 Hz, 1H), 7.22 (t, J = 7.5 Hz, 1H), 5.83 (s, 2H), 3.67 (t, J = 6.0 Hz, 2H), 3.62 (t, J = 6.0 Hz, 2H), ¹³C NMR (50 MHz, CDCl₃) δ 139.80, 138.26, 134.62, 127.12, 124.80,

121.54, 121.25, 109.36, 78.19, 77.68, 77.05, 76.41, 70.41, 61.69, HRMS(ESI-TOF)m/z: calcd for $C_{10}H_{12}N_2O_2[M + H]^+$:193.0972; found: 193.0978. IR (neat): v = 3431, 2926, 1260, 812, 514 cm⁻¹.

bis(imidazo[1,2-a]pyridin-3-yl)methane (12)¹

Eluent: 60% EtOAc/hexane); 65% yield (40.3 mg); yellow thick liquid ¹H NMR (600 MHz, CDCl₃) δ 8.23 (d, J = 6.8 Hz, 1H), 8.15 (d, J = 5.0 Hz, 1H), 7.65 – 7.62 (m, 2H), 7.45 (d, J = 8.1 Hz, 1H), 7.26 (s, 1H), 7.23 – 7.20 (m, 1H),

6.82 (t, J = 6.7 Hz, 1H), 6.68 - 6.65 (m, 1H), 6.49 (d, J = 8.3 Hz, 1H), 4.90 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 146.16, 132.50, 124.21, 123.31, 118.22, 118.04, 112.64, 20.10. IR (neat): v = 2923, 1454, 1264, 1093, 802 cm⁻¹.

3-References

(1) P. Liu, Z. Shen, Y. Yuan and P. Sun, Synthesis of Symmetrical Methylene-Bridged Imidazoheterocycles Using DMSO as Methylene Source under Metal-Free Conditions, *Org. Biomol. Chem.*, 2016, **14**, 6523.

4. Copies of ¹H and ¹³C NMR of spectra

¹³C NMR of CDCl₃

¹H NMR 3a

¹³C NMR 3c

¹³C NMR 3d

S17

¹³C NMR 3l

¹³C NMR 3m

¹H NMR 30

[Type text]

[Type text]

¹H NMR 3u

¹³C NMR 3u

¹³C NMR 3w

¹³C NMR 4b

[Type text]

<,7.55 <7.53

4.8

¹³C NMR 5a

[Type text]

¹³C NMR 12

S41

[Type text]

[Type text]

[Type text]

[Type text]

[Type text]

[Type text]

[Type text]

[Type text]

[Type text]

HRMS Spectra intermediate ${\bf A}$ and ${\bf B}$