Influence of the ultrasonic-assisted synthesis on Al distribution in MOR zeolite. From gel to resulting material

Joanna E. Olszowka ^a, Veronika Pashkova ^a, Agnieszka Kornas ^a, Jiri Dedecek ^a, Jiri Brus ^b, Martina Urbanova ^{a, b}, Edyta Tabor ^a, Petr Klein ^a, Libor Brabec ^a, Kinga Mlekodaj ^{* a}

J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i.
Dolejškova 2155/3, 182 23 Prague, Czech Republic
*E-mail: kingapatrycja.mlekodaj@jh-inst.cas.cz

Institute of Macromolecular Chemistry of the CAS, v.v.i.
Heyrovského nám. 1888, 162 00 Prague, Czech Republic

Electronic Supplementary Information

Fig. S1. SEM images of mordenites prepared by US assisted synthesis (MOR-U), and by standard approach (MOR-R).¹

Fig. S2. ^{29}Si MAS NMR spectrum of MOR-U (a), and MOR-R (b). Single-pulse spectra in colors, and ^{29}Si CP MAS NMR spectra in black.¹

B) ²⁷Al DQF MAS NMR (build-up of DQ coherence)

Fig. S3. Comparison of ²⁷AI MAS NMR and ²⁷AI DQF MAS NMR spectra of AI(CH₃COO)₃ (a); the buildup of ²⁷AI DQ coherence followed for recoupling periods ranging from 200 to 2000 μ s (b).

Table S1. Concentration of SiOHAI calculated basing on the intensity of the band at 3613 cm⁻¹ on FTIR spectra of evacuated H-forms of MOR-R and MOR-U, and after d_3 -acetonitrile adsorption.

Sample	SiOHAI [mmol/g]				
	evacuation at 450 °C	after CD ₃ CN interaction			
MOR-U	1.9	0.15			
MOR-R	2.3	0.05			

Extinction coefficient for BOH in FER 4.05 cm µmol taken form from Wichterlova et al..²

Table S2. Chemical composition from XRF analysis of all studied mordenite samples in their H-, Na-, and CoNa-forms.

Sample	Si/Al	Na/Al	Co/Al	Al	Na	Со
				mmol/g		
H-MOR-U	5.7	-	-	2.35	-	-
H-MOR-R	8.0	-	-	1.77	-	-
Na-MOR-U	6.8	0.91	-	1.98	1.80	-
Na-MOR-R	6.1	0.82	-	2.32	1.90	-
CoNa-MOR-U	6.0	0.34	0.27	2.24	0.89	0.60
CoNa-MOR-R	8.1	0.39	0.20	1.75	0.80	0.36

References

- 1. A. Kornas, J. E. Olszówka, M. Urbanova, L. Brabec, J. Rathousky, J. Dedecek and V. Pashkova, ACS Omega, 2021, **6**, 2340-2345.
- 2. B. Wichterlova, Z. Tvaruzkova, Z. Sobalik and P. Sarv, *Microporous Mesoporous Mat.*, 1998, **24**, 223-233.