Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

1 Preparation of ZIF-67-modified magnetic solid phase extraction

2 material and application in the detection of pyridine ring insecticides

- 3 Xiangzhi Feng^{a,b}, Yuanyuan Li^{a,b*}, Yuanyuan Yang^{a,b}, Yulong Ma^{a,b},
- 4 Wenxin Ji^{a,b}, Yonggang Sun^{a,b}, Tong Chen^c, Yang chen^d
- 5 ^a State Key Laboratory of High-efficiency Coal Utilization and Green
- 6 *Chemical Engineering*
- 7 ^b College of Chemistry and Chemical Engineering, Ningxia University,
- 8 Yinchuan 750021, China
- 9 ^c Comprehensive Technology Centre, Zhenjiang Customs District P. R. of
- 10 China, Zhenjiang, 212000, China
- ^{*d*} Shanghe New Materials Company, Zhenjiang, 212000, China
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22 Journal: New Journal of Chemistry
- 23 Manuscript ID: NJ-ART-02-2021-000703
- 24

^{*} Corresponding author. Tel.: +86 951 2062330; fax: +86 951 2062323. *E-mail address:* liyuanyuan_abc@sohu.com (Y. Li)

25 Preparation of MGO composites

26 MGO composite was prepared by one-step co-precipitation method. 27 Briefly, GO (0.3g) was dispersed into deionized water (50mL) with 28 ultrasonic treatment for 4h to form a uniform dispersion. Next, 29 $FeCl_3 6H_2O$ (4.0g) and $FeCl_2 4H_2O$ (2.5g) were dissolved in deionized 30 water and added to the above dispersion. Meanwhile, 25mL ammonia 31 solution was quickly added to the reaction mixture, and 0.75mL oleic acid 32 was injected into the mixture after stirring for 10minutes. Then, the 33 reaction mixture was heated with a thermostatic magnetic stirring at 90 $^{\circ}$ C 34 for 3h. After that, the product was washed several times with deionized 35 water and ethanol. MGO was collected by magnetic separation and dried 36 under vacuum at 70 $^{\circ}$ C overnight.

37

38 Preparation of poly-dopamine modified MGO

39 MGO@PDA was synthesized by DA polymerization in Tris-HCl 40 buffer(pH=8.5) at 25 °C. Briefly, MGO (0.15g) was poured into deionized 41 water (100mL) with sonicate treatment for 1h to form a homogeneous 42 solution. Subsequently, DA (0.2g) and Tris (0.05g) were added to the 43 dispersion, and continuous ultrasonically shaken for 5min. Then, this 44 mixture was reacted for 24h under mechanically stirring with the speed of 45 150rpm at room temperature. Next, the obtained product (MGO@PDA) 46 was separated with external magnetic field, which was successively

washed with ultrapure water and ethanol several times. Finally, the
product was dried under vacuum oven 60 °C overnight.

49

50 Representation of different isothermal adsorption equations

51 Langmuir isotherm model:

52
$$\frac{C_e}{q_e} = \frac{1}{q_{\max}K_L} + \left(\frac{1}{q_{\max}}\right)C_e \quad (1)$$

53 Freundlich isotherm:

54
$$Inq_e = InK_F + \frac{InC_e}{n}$$
(2)

where q_e (mg·g⁻¹) is the adsorption capacity, C_e (µg·mL⁻¹) is the equilibrium concentration in water, q_{max} (mg·g⁻¹) is the theoretical saturate adsorption capacity in the Langmuir model, and K_L (mL·µg⁻¹) is the Langmuir isotherm constant demonstrating the tendency of adsorption, K_F is the Freundlich isotherm constant and n is the heterogeneity factor.

60 Representation of different Kinetic adsorption equations

61 pseudo-first order model:

$$In(q_e - q_t) = Inq_e - k_1 t \quad (3)$$

63 pseudo-second order kinetic model:

64
$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
 (4)

66 Where q_e and q_t (mg g⁻¹) are the amounts of the analyte onto the 67 adsorbents at equilibrium and time t (min). k_1 (min⁻¹) is the rate 68 constant in the pseudo-first order adsorption model. k_2 (g/(mg min)) is 69 the rate constant in the pseudo-second order adsorption model.

70

71 Table S1: The peak areas of praziquantel and pymetrozine at the concentration
72 of 0.1-100 μg·mL⁻¹

Concentration	Peak area (praziquantel)	Peak area (pymetrozine)
0.1µg/mL	10019.7	92485.7
1μg/mL	100387.7	100321.6
5µg/mL	478702.9	496154.8
10µg/mL	971128.5	967214.9
15µg/mL	1467116.6	1425064.2
20µg/mL	1970804.1	1947788.8
30µg/mL	2911799.7	2912494.2
40µg/mL	3900563.8	3881115.4
50µg/mL	4734553.8	4846367.3
60µg/mL	5664812.0	5813337.9
100µg/mL	9350021.9	9567641

73

74

As shown in Fig.S1, matrix-matched calibration curves for the relationship between concentrations of analytes and their peak areas were calculated by using weighted least-squares regression.

79

81 Fig.S1: The standrd curves of praziquantel and pymetrozine at the concentration
82 of 0.1-100 μg·mL⁻¹

83

84 Table S2: Analytical performance of the present method

Analytes	Linear range	Regression equation	R ²	LOD	LOQ
praziquantel	0.1-100 μg mL ⁻¹	A=93626C _e +50940	0.9997	0.21ng mL ⁻¹	0.69ng mL ⁻¹
pymetrozine	0.1-100 μg mL ⁻¹	A=95727C _e +32241	0.9999	0.08ng mL ⁻¹	0.26ng mL ⁻¹

85

86

-	Contaminants	praziquantel	pymetrozine
-	Structure		N N N N
	Molecular weight (g/mol)	312.41	217.23
	Molecular formula	$C_{19}H_{24}N_2O_2$	$C_{10}H_{11}N_5O$
	рКа	-0.98 ± 0.20	12.90 ± 0.40
	CAS	55268-74-1	123312-89-0
	Melting point (°C)	136-138	217
	Physical properties	White crystal powder	White crystal powder
89			
90			
91			
92			
93			
94			
95			

88 Table S3: Specification of praziquantel and pymetrozine

Iterms	elements	GO	MGO	MGO@PDA	MGO@PDA@ZIF-67
	C1s	62.93	36.34	65.73	46.32
Surface	N1s	0.30	0.02	8.96	15.13
atomic	O1s	36.77	40.27	21.08	31.27
ratio(%)	Fe2p	0.00	23.36	4.23	3.14
	Co2p	0.00	0.01	0.00	4.14

96 Table S4: The surface atomic ration of main elements in different materials

98 Table S5 Two isotherm adsorption models parameters onto

MGO@PDA@ZIF-67 m-SPE material.

	Lang	gmuir mo	del	Freundlich model		
Contaminant	q_{max} (mg g ⁻¹)	<i>K_L</i> (L mg ⁻¹)	R^2	$\frac{K_F}{(\mathrm{mg}^{1\cdot\mathrm{n}}\mathrm{L}^{\mathrm{n}}\mathrm{g}^{\cdot\mathrm{l}})}$	1/n	R^2
Praziquantel	22.68	7.113	0.9999	19.52	0.0614	0.8595
Pymetrozine	24.27	8.240	0.9998	18.86	0.0509	0.8632

	Pseu	ido-first o	rder	Pse	udo-second orde	r
Contaminant	<i>q</i> _{e1} (mg g ⁻¹)	K_1 (min ⁻¹)	R^2	$q_{e2} \pmod{(\mathrm{mg \ g}^{-1})}$	K ₂ (g/(mg min))	R^2
Praziquantel	18.84	0.0296	0.9654	24.39	0.00248	0.9998
Pymetrozine	22.95	0.0324	0.8187	26.81	0.00237	0.9997

m-SPE material.

106

105

107 Table S7: Comparison between the developed method and other previously

108	m-SPE-HPLC methods for the extraction and determination of insecticides
100	In of L in LC methods for the extraction and determination of insecticides

Adsorbent	Analysis Method	Dosage of sorbent	Linear range	Recovery (%)	Ref.
Fe ₃ O ₄ @SiO ₂ @KIT-6	m-SPE-HPLC-UV	40mg	0.02-1200 ng mL ⁻¹	86.6-98.8	[41]
Fe ₃ O ₄ @COF-(NO ₂) ₂	m-SPE-HPLC-UV	10mg	0.1-30 ng mL ⁻¹	77.5-110.2	[42]
MGO/MIL	m-SPE-HPLC-DAD	20mg	0.064-3500 ng mL ⁻¹	82.13-102.27	[43]
Fe ₃ O ₄ @SiO ₂ -GO-MOF	m-SPE-HPLC-UV	10mg	0.02-1 μg·mL ⁻¹	81.2-113.1	[44]
MGO@PDA@ZIF-67	m-SPE-HPLC-UV	5mg	0.10-100 μg·mL ⁻¹	92.30-102.8	This work

_

109

110

References
41 M. Zhang, J. Yang, X. Geng, Y. Li, Z. Zha, S. Cui and J. Yang, J. Chromatogr. A, 2019, 1598,
20-29.
42 J. Lu, R. Wang, J. Luan, Y. Li, X. He, L. Chen and Y. Zhang, J. Chromatogr. A, 2020, 1618,
460898.
43 A. Ghiasi, A. Malekpour and S. Mahpishanian, Talanta, 2020, 217, 121120.
44 X. Wang, X. Ma, P. Huang, J. Wang, T. Du, X. Du and X. Lu, Talanta, 2018, 181, 112-117.