Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic supplementary information

Syntheses, structures and magnetic properties in two isostructural dicyanamide-bridged 2D polymers [†]

Andrii Kliuikov^a, Oleksandr Bukrynov^b, Erik Čižmár^a, Lucia Váhovská^c, Svitlana Vitushkina^b, Erika Samol'ová^d, Ivan Potočňák^{e*}

 ^a P. J. Šafárik University in Košice, Faculty of Science, Institute of Physics, Park Angelinum 9, SK-041 54 Košice, Slovakia
 ^b V.N. Karazin Kharkiv National University, Faculty of Chemistry, Department of Applied Chemistry, Svobody sq. 4, UA-61022 Kharkiv, Ukraine
 ^c University of Veterinary Medicine and Pharmacy in Košice, Department of Chemistry, Biochemistry and Biophysics, Komenského 73, SK-041 84 Košice, Slovakia
 ^d Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
 ^e P. J. Šafárik University in Košice, Faculty of Science, Institute of Chemistry, Department of Inorganic Chemistry, Moyzesova 11, SK-041 54 Košice, Slovakia

[†] Low-dimensional compounds containing cyanido groups. Part XXXVI.

Fig S1 π - π interactions (orange dashed lines) between aromatic rings in 1 and 2. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity.

Symmetry codes: iii = -x, 1 - y, 1 - z; iv = 1 - x, 1 - y, 1 - z.

Fig. S2 X-band EPR spectrum of 1 measured at 2.2 K.

Fig. S3 Frequency dependence of real (left panel) and imaginary (right panel) component of AC susceptibility of **1** measured at different applied DC fields measured at 2 K including the fit of the modified Debye model (an additional Debye function was included to take into account a very small contribution at higher frequencies).

Fig. S4 Frequency dependence of real (left panel) and imaginary (right panel) component of AC susceptibility of **1** measured at an applied DC field 0.7 T in the temperature range 1.8 - 5.25 K including the fit of the modified Debye model (an additional Debye function was included to take into account a very small contribution at higher frequencies).

Fig. S5 Structure of all fragments used for the SA-CASSCF/NEVPT2 calculations of ZFS parameters in compound **1**, a) $[Co(biq)(dca)_4]^{2-}$, b) $[Co(biq)(\mu_{1,5}-dca)_4H_4]^{2+}$, c) $[Co(biq)(\mu_{1,5}-dca)_4H_2Ca]^{2+}$, d) $[Co(biq)(\mu_{1,5}-dca)_4Na_2Ca]^{2+}$, the same type of fragments was used for compound **2**.

Fig. S6 The energies of 6 lowest multiplets as obtained from SA-CASSCF/NEVPT2 calculations for: a) $[Co(biq)(dca)_4]^{2-}$, b) $[Co(biq)(\mu_{1,5}-dca)_4H_4]^{2+}$, c) $[Co(biq)(\mu_{1,5}-dca)_4H_2Ca]^{2+}$, d) $[Co(biq)(\mu_{1,5}-dca)_4H_2Ca]^{2+}$. Energies obtained using Griffith-Figgis (GF) Hamiltonian Eq. 3 with the set of the parameters obtained from the fit of $\mu_{eff}(T)$ are included.

b)

d)

Fig. S7 Structure of all fragments used for the BS DFT calculations of two different exchange paths in compound **1**, a) $[Co(biq)(dca)_2-(\mu_{1,5}-dca)_2-Co(biq)(dca)_2]^{2-}$, b) $[Co(biq)(\mu_{1,5}-dca)_2H_2-(\mu_{1,5}-dca)_2-Co(biq)(\mu_{1,5}-dca)_2H_2]^{2+}$, c) $[Co(biq)(\mu_{1,5}-dca)_2Na_2-(\mu_{1,5}-dca)_2-Co(biq)(\mu_{1,5}-dca)_2Na_2]^{2+}$, d) $[(dca)-Co(biq)(dca)_2-(\mu_{1,5}-dca)-Co(biq)(dca)_2-(\mu_{1,5}-dca)_2H_2-(\mu_{1,5}-dca)_$

Compound	U _{eff} /cm ⁻¹	τ_0/s	magnetic	Ref.
	(applied		interactions	
	field/T)			
$[\operatorname{Co}(atz)_2(\operatorname{dca})_2]_n$	5.1 (0.1)	1.7×10^{-6}	neglected	Palion-
easy-axis anisotropy				Gazda 2015
$[Co(dca)_2(NH_2pyz)_2]_n \cdot H_2O$ easy-plane anisotropy	24.5 - 28.2	$1.19 - 2.5 \times 10^{-7}$	neglected	Palion-
	(0.25)	$3.0 - 5.7 \times 10^{-5}$		Gazda 2019
	1.62 - 2.37			
$\left[C_{0,2}(d_{0,0}),(HO_{0,0,0}),(H_{0,0}),(H$	11.6 - 20.1	$1.73 - 14.1 \times 10^{-7}$	$zJ = -0.3 \text{ cm}^{-1}$	Palion-
easy-plane anisotropy	(0.2)	$1.96 - 4.3 \times 10^{-5}$		Gazda 2019
	0.33 - 1.26			
$[Co(bim)_2(dca)_2]_n$	5.33 (0.1)	1.54×10^{-6}	neglected	Switliczka
easy-axis anisotropy				2016
$[Co(bmim)_2(dca)_2]_n$	13.81 (0.1)	0.63×10^{-6}	$\Theta = -0.07 \text{ cm}^{-1}$	Switliczka
easy-axis anisotropy				2016
$[Co(pypz)(dca)(H_2O)]_n \cdot (dca)$	103 (0.4)	1.2×10 ⁻¹¹	$zJ = -0.006 \text{ cm}^{-1}$	Switlicka
easy-axis anisotropy				2020

Table S1 Comparison of magnetic parameters of other dca bridged polymeric complexes showing slow magnetic relaxation.

atz = 2-amino-1,3,5- triazine; pyz = pyrazine; bim = 1-benzylimidazole; bmim = 1-benzyl-2methylimidazole; pypz = 2,6-bis(pyrazol-1-yl)pyridine

J. Palion-Gazda, T. Klemens, B. Machura, J. Vallejo, F. Lloret and M. Julve, Dalton Trans., 2015, 44, 2989-2992.

J. Palion-Gazda, K. Choroba, B. Machura, A. Świtlicka, R. Kruszynski, J. Cano, F. Lloret and M. Julve, Dalton Trans., 2019, **48**, 17266-17280.

A. Świtlicka-Olszewska, J. Palion-Gazda, T. Klemens, B. Machura, J. Vallejo, J. Cano, F. Lloret, M. Julve, *Dalton Trans.*, 2016, **45**, 10181–10193.

A. Świtlicka, B. Machura, M. Penkala, A. Bieńko, D. C. Bieńko, J. Titiš, C. Rajnák, R. Boča, A. Ozarowski, Inorg. Chem. Front., 2020, **7**, 2637-2650.

Table S2 The energies (in cm⁻¹) of 6 lowest multiplets as obtained from SA-CASSCF/NEVPT2 calculations for: a) $[Co(biq)(dca)_4]^{2-}$, b) $[Co(biq)(\mu_{1,5}-dca)_4H_4]^{2+}$, c) $[Co(biq)(\mu_{1,5}-dca)_4H_2Ca]^{2+}$, d) $[Co(biq)(\mu_{1,5}-dca)_4Na_2Ca]^{2+}$. Energies obtained using GF Hamiltonian Eq. 3 with the set of the parameters obtained from the fit of the $\mu_{eff}(T)$ are included.

multiplet	а	b	с	d	GF model
1	0	0	0	0	0
2	137.5	155.8	166.7	139.4	193.8
3	906.9	765.2	716.1	887.2	717.8
4	1166.9	1093.4	1055.8	1140.0	1028.8
5	1460.2	1252.4	1214.1	1482.8	1497.1
6	1558.9	1401.0	1361.9	1574.4	1590.1

Table S3 Comparison of the exchange coupling J_{BS1} and J_{BS2} in 1 obtained from BS DFT calculations for different binuclear model fragments of the polymeric structure.

	B3LYP	TPSSh	PBE0
	J_{BS1} (cm ⁻¹)		
$[Co(biq)(dca)_2-(\mu_{1,5}-dca)_2-Co(biq)(dca)_2]^{2-}$	-0.44	-0.59	-0.46
$[Co(biq)(\mu_{1,5}-dca)_2H_2-(\mu_{1,5}-dca)_2-Co(biq)(\mu_{1,5}-dca)_2H_2]^{2+}$	-0.36	-1.03	-0.41
$[Co(biq)(\mu_{1,5}-dca)_2Na_2-(\mu_{1,5}-dca)_2-Co(biq)(\mu_{1,5}-dca)_2Na_2]^{2+}$	-0.60	-1.12	-0.91
		$J_{BS2}(\mathrm{cm}^{-1})$	
$[(dca)-Co(biq)(dca)_2-(\mu_{1,5}-dca)-Co(biq)(dca)_2-(dca)]^{3-2}$	-0.34	-0.49	-0.45
$[H(\mu_{1,5}-dca)-Co(biq)(\mu_{1,5}-dca)_2H_2-(\mu_{1,5}-dca)-Co(biq)-Co(biq)(\mu_{1,5}-dca)-Co(biq$	-0.56	-0.84	-0.40
$dca)_2H_2-(\mu_{1,5}-dca)H]^{3+}$			
$[Na(\mu_{1,5}-dca)-Co(biq)(\mu_{1,5}-dca)_2 Ca-(\mu_{1,5}-dca)-Co(biq)-Co(biq)(\mu_{1,5}-dca)-Co(bi$	-0.46	-0.71	-0.40
$dca)_2 Ca-(\mu_{1,5}-dca)Na]^{3+}$			

Table S4 Comparison of the exchange coupling J_{BS1} and J_{BS2} in 2 obtained from BS DFT

calculations for different binuclear model fragments of the polymeric structure.

	B3LYP	TPSSh	PBE0
	J_{BSI} (cm ⁻¹)		
$[Ni(biq)(dca)_2 - (\mu_{1,5} - dca)_2 - Ni(biq)(dca)_2]^{2}$	-0.70	-1.00	0.06
$[Ni(biq)(\mu_{1,5}-dca)_2H_2-(\mu_{1,5}-dca)_2-Ni(biq)(\mu_{1,5}-dca)_2H_2]^{2+}$	-0.48	-0.41	0.31
$[Ni(biq)(\mu_{1,5}-dca)_2Na_2-(\mu_{1,5}-dca)_2-Ni(biq)(\mu_{1,5}-dca)_2Na_2]^{2+}$	0.15	-0.46	0.33
		J_{BS2} (cm ⁻¹)	
$[(dca)-Ni(biq)(dca)_2-(\mu_{1,5}-dca)-Ni(biq)(dca)_2-(dca)]^{3-1}$	0.36	0.53	1.05
$[H(\mu_{1,5}-dca)-Ni(biq)(\mu_{1,5}-dca)_2H_2-(\mu_{1,5}-dca)-Ni(biq)(\mu_{1,5$	0.45	0.65	1.11
$dca)_2H_2-(\mu_{1,5}-dca)H]^{3+}$			
[Na(µ1,5-dca)-Ni(biq)(µ1,5-dca)2Ca-(µ1,5-dca)-Ni(biq)(µ1,5-	0.38	0.57	1.22
$dca)_2Ca-(\mu_{1,5}-dca)Na]^{3+}$			