Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information

Inkjet-Printed Paper-Based Electrochemical Sensor with Gold Nano-Ink for

Detection of Glucose in Blood Serum

Tushar Kant^{1,} Kamlesh Shrivas^{1*}, Kavita Tapadia², Rama Devi², Vellaichamy Ganesan³ and Manas Kanti Deb¹

¹School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur- 492010

(C.G.), India

²Department of Chemistry, National Institute of Technology, Raipur- 492010 (C.G.), India

³Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-

221005, UP, India

Corresponding author email: kshrivas@gmail.com

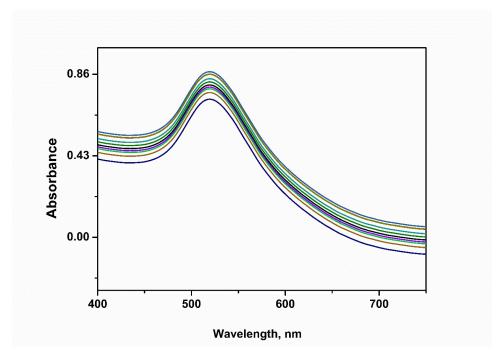


Fig. S1. UV-Vis spectra of AuNPs/starch analyzed for50 consecutive days.

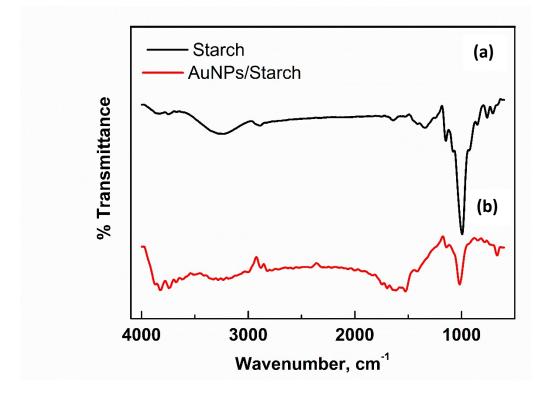
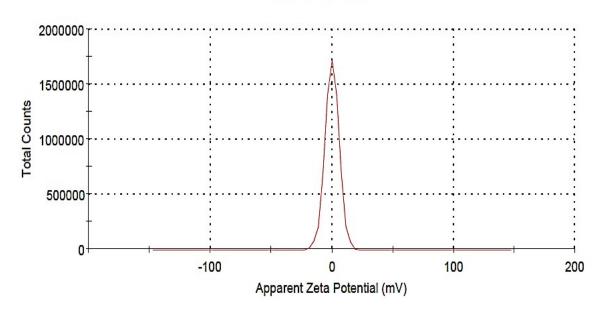
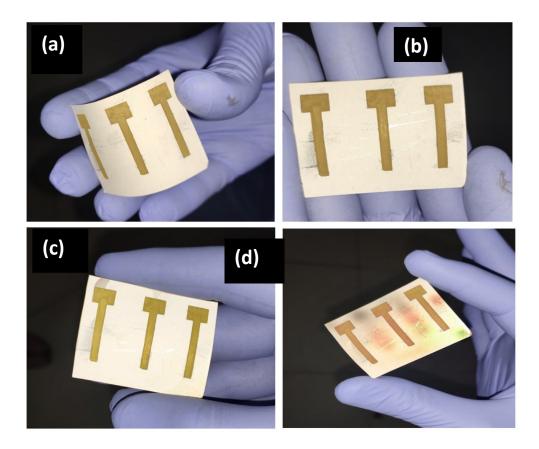
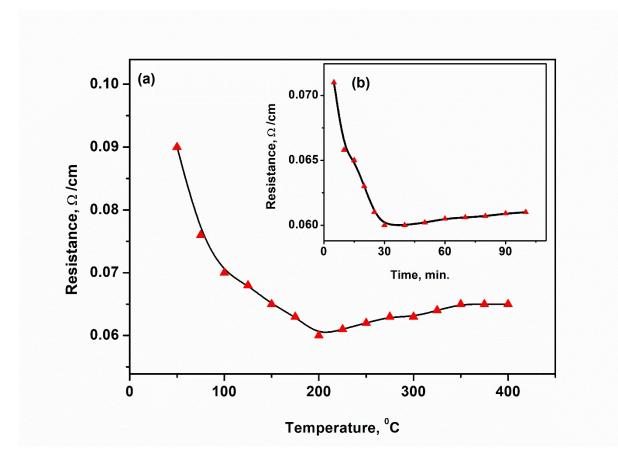
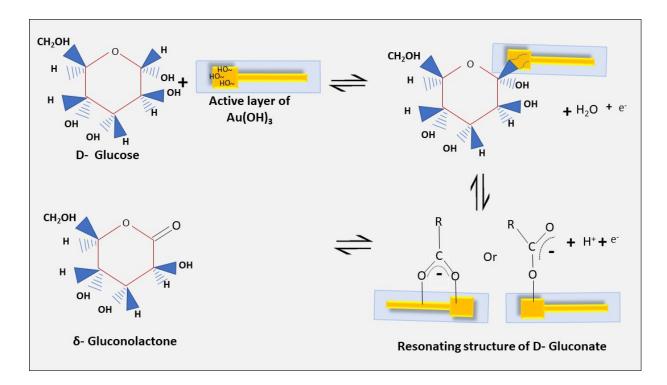
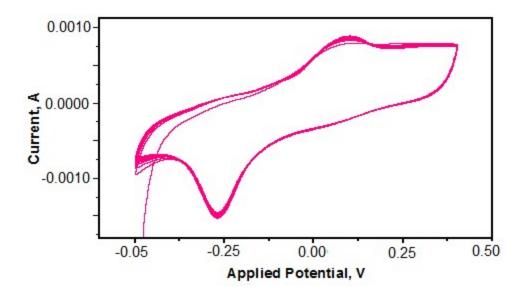




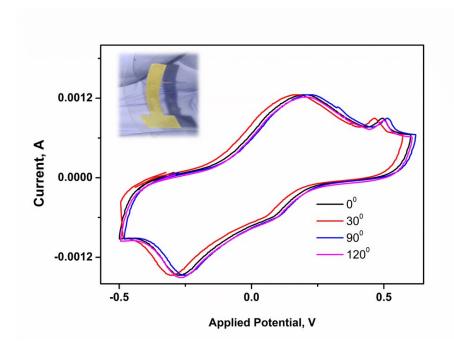
Fig. S2. FTIR spectra of (a) pure starch and (b) AuNPs/starch.



Zeta Potential Distribution


S3. Zeta potential measurement of AuNPs/starch


Fig. S4. Inkjet-printed (with nano-ink) on different paper substrates(a) photopaper (b) normal printing paper (c) Whatman filter paper No.1and (d) bond paper


Fig. S5. Effect of sintering temperature on fabricated AuNPs-PPE from 50 to 110°C. (b) Effect of sintering time from 5 to 35 min on resistance value in ohm/cm

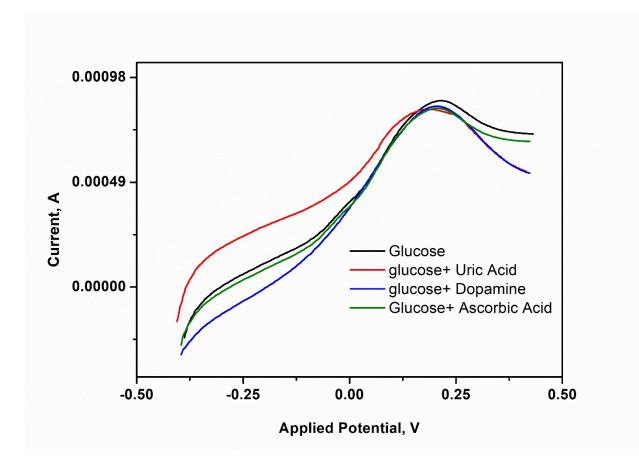

Fig. S6. Proposed mechanism for the detection of glucose through the electrochemical oxidation glucose on AuNPs-PPE.

Fig. S7. Ccontinuous 50 CV cycles of 5 mM glucose in PBS (0.1 M, pH 9.2) with a scan rate of 10 mV s⁻¹ when AuNPs-PPE is used as a working electrode.

Fig S. 8. CV response observed for 10 mM glucose at 10 mV s⁻¹ scan rate in PBS (0.1 mM, 9.2 pH) when AuNPs-PPE bended at different angles (30, 90, and 120 degree)

Fig. S9. Effects of uric acid (10 mM), dopamine (10 mM)and ascorbic acid (10 mM) toward the electrocatalytic oxidation of glucose (5 mM) using AuNPs-PPE in PBS (0.1 M,) at ascan rate of 10 mVs⁻¹

Table S1. Determination of glucose in blood serum sample					
Glucose found, mM using			Glucose found, mM using		
AuNPs-PPE as an electrochemical sensor			Glucometer		
(n=6)			(n=5)		
x _{i1}	$\mathbf{x}_{i1-} \overline{\mathbf{x}}_1$	$(x_{i1-} \overline{x}_{1)}^2$	x _{i2}	(x_{i2}, \bar{x}_{2})	$(x_{i2} - \overline{x}_{2})^2$
5.33	0.02	0.0004	5.34	0.04	0.0016
5.30	-0.01	0.0001	5.29	-0.01	0.0001
5.28	-0.03	0.0009	5.30	0.00	0.0000
5.35	0.04	0.0016	5.28	-0.02	0.0004
5.29	-0.02	0.0004	5.32	-0.03	0.0009
5.31	0.00	0.0000	5.33	0.03	0.0009
$\bar{x}_1 = 5.31$		$\Sigma(x_{i1-} \overline{x}_{1)}^2 = 0.0034$	x ₂ =5.30		$\Sigma(x_{i2-} \overline{x}_{2)}^2 = 0.0039$

F-test: It is the ratio of square of the standard deviation of two analytical methods

$$S_1^2$$

$$F=\frac{S_1^2}{S_2^2}$$

Where S1 and S2 standard deviations of two methods respectively, F is variance

$$S_{1}^{2} = \sum \frac{(xi_{1} - x_{1})^{2}}{N1 - 1} = \frac{0.0034}{6 - 1} = 6.8 \times 10^{-4}$$

$$S_{2}^{2} = \sum \frac{(xi_{2} - x_{2})^{2}}{N2 - 1} = \frac{0.0039}{5 - 1} = 9.7 \times 10^{-4}$$

$$F = \frac{6.8 \times 10 - 4}{9.7 \times 10 - 4}$$

$$F = 0.70$$

• At 95%, the tabulated F value for $v_1=5$ and $v_2=4$ is 6.26

• The calculated F value less than tabulated F value at 95% confidence level, then there is no significant different between the variance of the two methods, so the two methods have comparable standard deviation and t test can be applied:

t-test

 $\underline{+}t = 0.35_{x1.64}$

<u>+t</u> =0.58

* The tabulated t value for nine degrees of freedom (N_1+N_2-2) at the 95% confidence level is 2.262 and the thus calculated value is less than tabulated value and thus there is no statistical difference in the results by two methods.