Synthesis and antibiofilm activity of 1,2,3-triazole-pyridine hybrids against methicillin-resistant *Staphylococcus aureus* (MRSA)

Tamer El Malah,^a* Hanan A. Soliman,^a Bahaa A. Hemdan,^b Randa E. Abdel Mageid,^a and Hany

F. Nour a*

^aPhotochemistry Department, Chemical Industries Research Division, National Research Centre, 33 El Buhouth Street, P.O. Box 12622, Cairo, Egypt.

^bWater Pollution Research Department, Environmental Research Division, National Research Centre, 33 El Buhouth Street, P.O. Box 12622 Cairo, Egypt.

*Corresponding authors: tmara_nrc3000@yahoo.com (Tamer El Malah), hany.nour@daad-alumni.de (Hany F. Nour).

Supporting Information

Figure S1. ¹ H NMR spectrum of compound 3 (400 MHz, CDCl ₃ , 25 °C)	4
Figure S2. ¹³ C NMR spectrum of of compound 3 (100 MHz, CDCl ₃ , 25 °C)	4
Figure S3. ¹ H NMR spectrum of compound 4 (400 MHz, CDCl ₃ , 25 °C)	5
Figure S4. ¹³ C NMR spectrum of of compound 4 (100 MHz, CDCl ₃ , 25 °C)	5
Figure S5. ¹ H NMR spectrum of compound 11 (400 MHz, CDCl ₃ , 25 °C)	6
Figure S6. ¹³ C NMR spectrum of of compound 11 (100 MHz, CDCl ₃ , 25 °C)	6
Figure S7. ¹ H NMR spectrum of compound 12 (400 MHz, CDCl ₃ , 25 °C)	7
Figure S8. ¹³ C NMR spectrum of of compound 12 (100 MHz, CDCl ₃ , 25 °C)	7
Figure S9. ¹ H NMR spectrum of compound 13 (400 MHz, CDCl ₃ , 25 °C)	8
Figure S10. ¹³ C NMR spectrum of of compound 13 (100 MHz, CDCl ₃ , 25 °C)	8
Figure S11. ¹ H NMR spectrum of compound 14 (400 MHz, CDCl ₃ , 25 °C)	9
Figure S12. ¹³ C NMR spectrum of of compound 14 (100 MHz, CDCl ₃ , 25 °C)	9
Figure S13. ¹ H NMR spectrum of compound 15 (400 MHz, CDCl ₃ , 25 °C)	10
Figure S14. ¹³ C NMR spectrum of of compound 15 (100 MHz, CDCl ₃ , 25 °C)	10
Figure S15. ¹ H NMR spectrum of compound 16 (400 MHz, CDCl ₃ , 25 °C)	11
Figure S16. ¹³ C NMR spectrum of of compound 16 (100 MHz, CDCl ₃ , 25 °C)	11
Figure S17. ¹ H NMR spectrum of compound 17 (400 MHz, CDCl ₃ , 25 °C)	12
Figure S18. ¹³ C NMR spectrum of of compound 17 (100 MHz, CDCl ₃ , 25 °C)	12
Figure S19. ¹ H NMR spectrum of compound 18 (400 MHz, CDCl ₃ , 25 °C)	13
Figure S20. ¹³ C NMR spectrum of of compound 18 (100 MHz, CDCl ₃ , 25 °C)	13
Figure S21. ¹ H NMR spectrum of compound 19 (400 MHz, CDCl ₃ , 25 °C)	14
Figure S22. ¹³ C NMR spectrum of of compound 19 (100 MHz, CDCl ₃ , 25 °C)	14
Figure S23. ¹ H NMR spectrum of compound 20 (400 MHz, CDCl ₃ , 25 °C)	15
Figure S24. ¹³ C NMR spectrum of of compound 20 (100 MHz, CDCl ₃ , 25 °C)	15
Figure S25. ¹ H NMR spectrum of compound 21 (400 MHz, CDCl ₃ , 25 °C)	16
Figure S26. ¹³ C NMR spectrum of of compound 21 (100 MHz, CDCl ₃ , 25 °C)	16
Figure S27. ¹ H NMR spectrum of compound 22 (400 MHz, CDCl ₃ , 25 °C)	17
Figure S28. ¹³ C NMR spectrum of of compound 22 (100 MHz, CDCl ₃ , 25 °C)	17
Figure S29. 2D NOESY spectrum of compound 4 (400 MHz, CDCl₃, 25 °C)	18

Figure S30. 2D COSY spectrum of compound 4 (400 MHz, CDCl ₃ , 25 °C)	18
Figure S31. 2D HSQC spectrum of compound 4 (400 MHz, CDCl ₃ , 25 °C)	19
Figure S32. 2D HMBC spectrum of compound 4 (400 MHz, CDCl ₃ , 25 °C)	19
Figure S33. 2D COSY spectrum of compound 19 (400 MHz, CDCl ₃ , 25 °C)	20
Figure S34. 2D HSQC spectrum of compound 19 (400 MHz, CDCl ₃ , 25 °C)	20
Figure S35. 2D HMBC spectrum of compound 19 (400 MHz, CDCl ₃ , 25 °C)	21
Figure S36. FT-IR spectrum of compound 3	21
Figure S37. FT-IR spectrum of compound 4	22
Figure S38. FT-IR spectrum of compound 11	22
Figure S39. FT-IR spectrum of compound 12	23
Figure S40. FT-IR spectrum of compound 13	23
Figure S41. FT-IR spectrum of compound 14	24
Figure S42. FT-IR spectrum of compound 15	24
Figure S43. FT-IR spectrum of compound 16	25
Figure S44. FT-IR spectrum of compound 17	25
Figure S45. FT-IR spectrum of compound 18	26
Figure S46. FT-IR spectrum of compound 19	26
Figure S47. FT-IR spectrum of compound 20	27
Figure S48. FT-IR spectrum of compound 21	27
Figure S49. FT-IR spectrum of compound 22	28
Figure S50. Normalised absorbance (%) of compounds 11-22 against planktonic and sessile MRSA	29
Table S1. 2D NMR correlations measured for compound 4	30
Table S2. 2D NMR correlations measured for compound 19	30
Table S1. Microtox effective concentration levels of toxicity	30

4 | S |

5.07

 $\begin{array}{c} -1.90\\ -1.81\\ -1.81\\ -1.81\\ -1.52\\ -1.52\\ -1.52\\ -1.49\\ -1.52\\ -1$

6.86

5 | S |

Figure S14. ¹³C NMR spectrum of of compound **15** (100 MHz, CDCl₃, 25 °C).

12 | S |

Figure S26. ¹³C NMR spectrum of of compound **21** (100 MHz, CDCl₃, 25 °C).

1,291,212,211,212,211,212,21

 $\begin{array}{c} 8.8.3\\ 8.8.23\\ 7.7.73\\$

Figure S29. 2D NOESY spectrum of compound 4 (400 MHz, CDCl₃, 25 °C).

Figure S30. 2D COSY spectrum of compound 4 (400 MHz, CDCl₃, 25 °C).

Figure S31. 2D HSQC spectrum of compound 4 (400 MHz, CDCl₃, 25 °C).

Figure S32. 2D HMBC spectrum of compound 4 (400 MHz, CDCl₃, 25 °C).

Figure S33. 2D COSY spectrum of compound 19 (400 MHz, CDCl₃, 25 °C).

Figure S34. 2D HSQC spectrum of compound 19 (400 MHz, $CDCI_3$, 25 °C).

Figure S35. 2D HMBC spectrum of compound 19 (400 MHz, CDCl₃, 25 °C).

Figure S36. FT-IR spectrum of compound 3.

Figure S38. FT-IR spectrum of compound 11.

Figure S39. FT-IR spectrum of compound 12.

Figure S40. FT-IR spectrum of compound 13.

Figure S42. FT-IR spectrum of compound 15.

Figure S43. FT-IR spectrum of compound 16.

Figure S44. FT-IR spectrum of compound 17.

Figure S45. FT-IR spectrum of compound 18.

Figure S47. FT-IR spectrum of compound 20.

Figure S48. FT-IR spectrum of compound 21.

Figure S49. FT-IR spectrum of compound 22.

Figure S50. Normalised absorbance (%) of compounds 11-22 against planktonic and sessile MRSA.

Table S1. 2D NMR correlations measured for compound 4

Spectra	Correlations
¹ H- ¹ H NOESY	H ^A -H ^B , H ^C -H ^D , H ^D -H ^E , H ^E -H ^F
¹ H- ¹ H COSY	H ^E -H ^F
НМВС	H ^B -C ^A (³ J), H ^B -C ^N (² J), H ^B -C ^K (³ J), H ^D -C ^C (³ J), H ^D -C ^J (³ J), H ^D -C ^H (³ J),
	H ^D -C ^I (² <i>J</i>), H ^D -C ^L (² <i>J</i>), H ^E -C ^F (² <i>J</i>), H ^E -C ^G (³ <i>J</i>), H ^E -C ^I (³ <i>J</i>), H ^F -C ^H (³ <i>J</i>), H ^F -
	C ^G (² <i>J</i>)
HSQC	H ^C -C ^C , H ^B -C ^B , H ^D -C ^D , H ^E -C ^E , H ^F -C ^F

 Table S2. 2D NMR correlations measured for compound 19

Spectra	Correlations
¹ H- ¹ H NOESY	H ^A -H ^B , H ^B -H ^C , H ^C -H ^D , H ^F -H ^G , H ^G -H ^H
¹ H- ¹ H COSY	H ^c -H ^D , H ^G -H ^H
НМВС	H ^E -C ^F (³ J), H ^E -C ^O (² J), H ^E -C ^M (³ J), H ^B -C ^A (³ J), H ^B -C ^L (³ J), H ^B -C ^J (³ J), H ^B -
	C ^N (² J), H ^G -C ^Q (³ J), H ^G -C ^H (² J), H ^C -C ^I (³ J), H ^C -C ^K (³ J), H ^H -C ^Q (² J), H ^H -C ^P
	(³ J), H ^F -C ^O (² J), H ^D -C ^J (³ J), H ^D -C ^I (² J)
HSQC	H ^A -C ^A , H ^E -C ^E , H ^B -C ^B , H ^G -C ^G , H ^C -C ^C , H ^H -C ^H , H ^F -C ^F , H ^D -C ^D

Table S3. Microtox effective concentration levels of toxicity

EC ₅₀ % degree	Toxicity level	
0-19	Extremely toxic	
20-39	Very toxic	
40-59	Toxic	
60-79	Moderately toxic	
80-99	Light toxic	
≥100	Nontoxic	