Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information:

Tuning the Lewis acidity of ZrO_2 for efficient conversion of CH_4 and

CO2 into acetic acid

Yufeng Li¹,[†] Bing Liu¹,[†] Jie Liu¹, Ting Wang¹, Yu Shen², Ke Zheng¹, Feng Jiang¹, Yuebing Xu¹, and Xiaohao Liu^{1,*}

¹Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P.R. China ²School of biotechnology, Jiangnan University, 214122 Wuxi, Jiangsu, P.R. China

Corresponding authors:

*Email for X. Liu: liuxh@jiangnan.edu.cn

†These authors contributed equally to this work.

Supporting method

Temperature-programmed desorption measurements

Temperature-programmed desorption measurements of NH₃ (NH₃-TPD) was performed on an automated chemisorption analyzer (TP5076 TPD/TPR) equipped with a TCD. Before each TPD experiments, 200 mg of sample was charged into the quartz tube and flushed with N₂ at 500 °C for 1 h following by cooling down to 40°C. Ammonia was adsorbed by exposing sample to a 10% NH₃/Ar (30 mL/min) for 1h at 40°C and then purged with helium at this temperature for 30 min to desorb physically adsorbed ammonia. Desorption of ammonia was carried out in flowing He (30 mL/min) by increasing the temperature to 700 °C with a heating rate of 10°C/min.

For CO-TPD, 200 mg of sample was first pretreated in N₂ at 500°C for 1 h following by cooling down to 40°C. The sample was exposed in a flow of 5%CO/Ar (30 mL/min) for 1h at 40°C and then purged with helium at this temperature for 30 min. Finally, the sample was heated to 700°C (for CO desorption) with a heating rate of 10 K \cdot min⁻¹ in He flow (30 mL \cdot min⁻¹).

For CO₂-TPD, 200 mg of sample was first pretreated in N₂ at 500°C for 1 h following by cooling down to 40°C. The sample was exposed in a flow of 20%CO₂/Ar (30 mL/min) for 1h at 40°C and then purged with helium at this temperature for 30 min. Finally, the sample was heated to either 900°C for CO₂ desorption or 700°C with a heating rate of 10°C·min⁻¹ in He flow (30 mL·min⁻¹).

Sulfate species on SZ would be decomposed to produce sulfur oxides at high temperatures. To distinguish the contribution of decomposed products of SZ during the TCD measurements, temperature-programmed decomposition measurements were also performed. The sample was pretreated in N₂ at 500°C for 1h, cooled down to 40°C and heated to 900°C with a heating rate of $10 \,^{\circ}\text{C} \cdot \text{min}^{-1}$ in He flow (30 mL·min⁻¹). The corresponding temperature-programmed decomposition curves are shown as dashed lines in Fig. 7a.

Sample	Sulfur content ^a (wt %)	Sulfur content ^b (wt %)	BET surface area ^c (m ² /g)	Pore size ^d (nm)	Pore volume ^{<i>d</i>} (cm ³ /g)
ZrO ₂	е	е	38.99	17.1	0.167
SZ-1	5.83	10.14	47.42	5.73	0.068
SZ-2	8.17	12.82	7.06	10.7	0.019
SZ-3	10.72	15.52	3.29	10.7	0.009

Table S1. Physicochemical properties of various catalysts.

^{*a*} Analyzed by ICP-OES.

^{*b*} Analyzed by XPS.

^c Calculated by N₂ sorption data.

 $^{\it d}$ Calculated using the BJH formalism from the N_2 adsorption (or desorption) branch isotherm.

^{*e*} Sulfur was not detected.

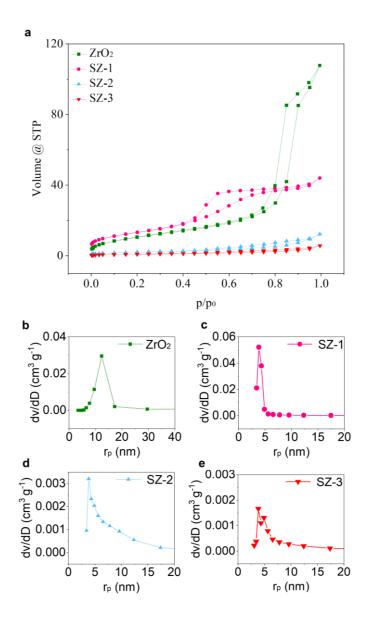


Fig. S1 N_2 adsorption-desorption isotherm curves (a); BJH pore size distribution curves (b-e).

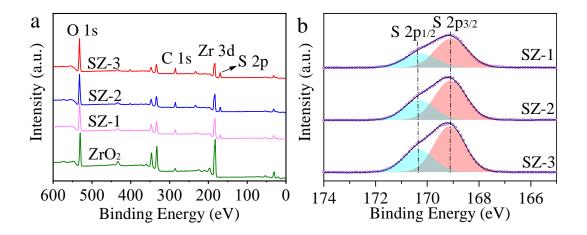


Fig. S2 Survey (a) and S 2p (b) XPS spectra of ZrO₂ and SZ catalysts.

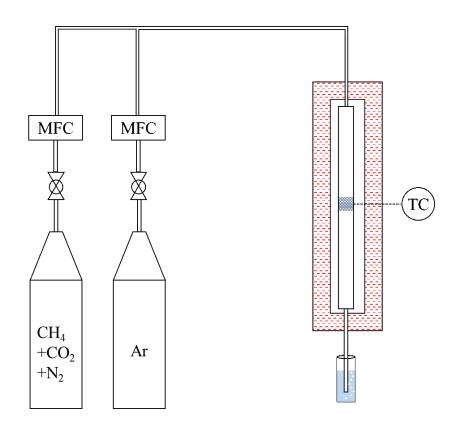
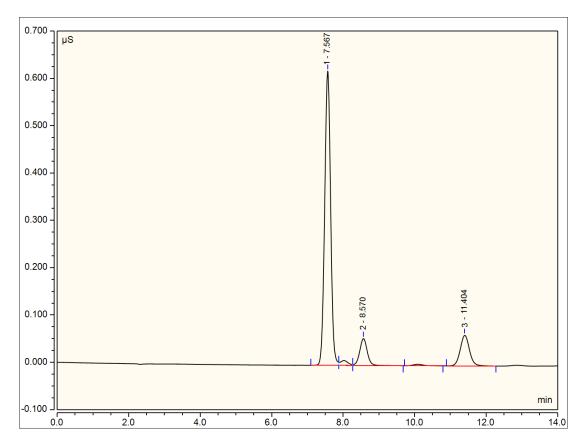



Fig. S3 The schematic of reactor for conversion of CH_4 and CO_2 into acetic acid.

Fig. S4 A typical ion chromatography spectrum obtained from the co-conversion of CH_4 and CO_2 on SZ-3. The main chromatographic peaks with the retention time at 7.567, 8.570 and 11.404 min were identified as fluoride, acetate and formate ion, respectively.

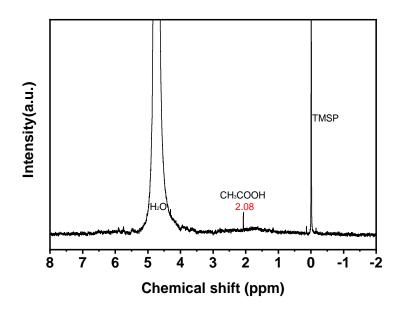

Entry	Catalysts	Acetic acid/µg	Formic acid/µg	Total products/µg
1	$\operatorname{ZrO}_2{}^a$	0.0248	0.003	0.0278
2	SZ-1 ^{<i>a</i>}	0.1697	0.0624	0.2321
3	SZ-2 ^{<i>a</i>}	0.2423	0.0552	0.2975
4	SZ-3 ^{<i>a</i>}	0.3557	0.0687	0.4244
5	SZ-3 ^b	0	0	0
6	SZ-3 ^c	0.0849	0.1812	0.2661

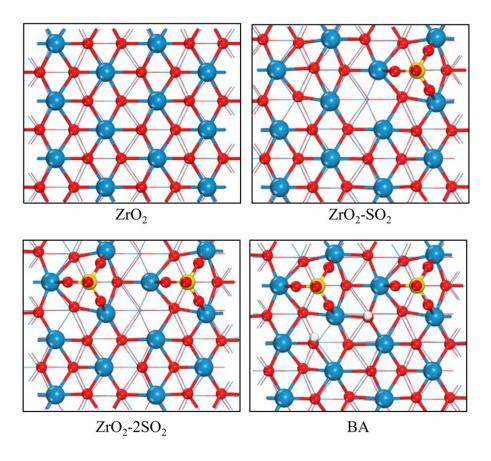
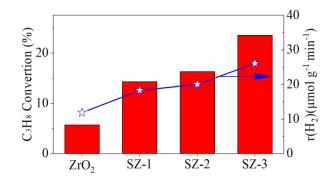
 Table S2. Catalytic performance of various catalysts.

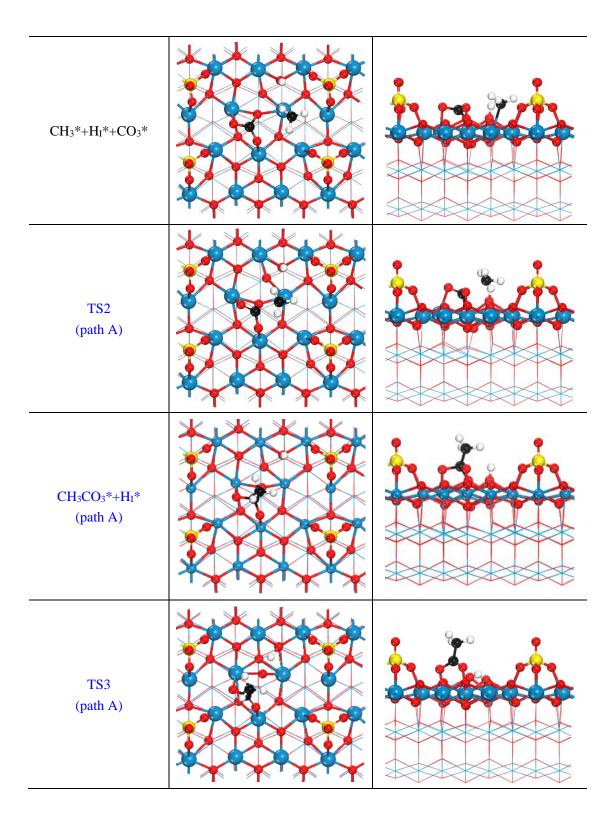
^{*a*} Reaction conditions: 1 atm, 500 °C, CH₄: CO₂: N₂=45: 45: 10, 3000 cm³h⁻¹g_{cat⁻¹}

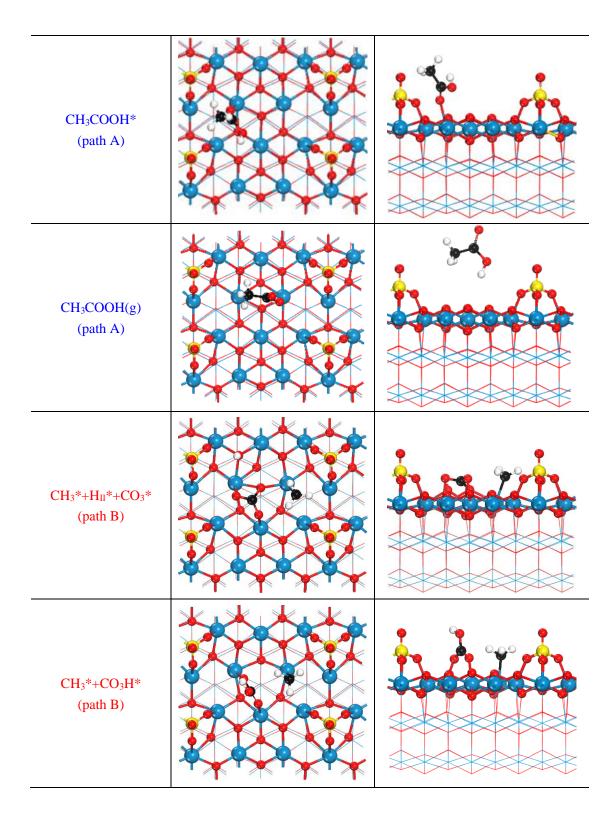
^b Reaction conditions: 1 atm, 500 °C, pure CO₂, 3000 cm³h⁻¹g_{cat}⁻¹

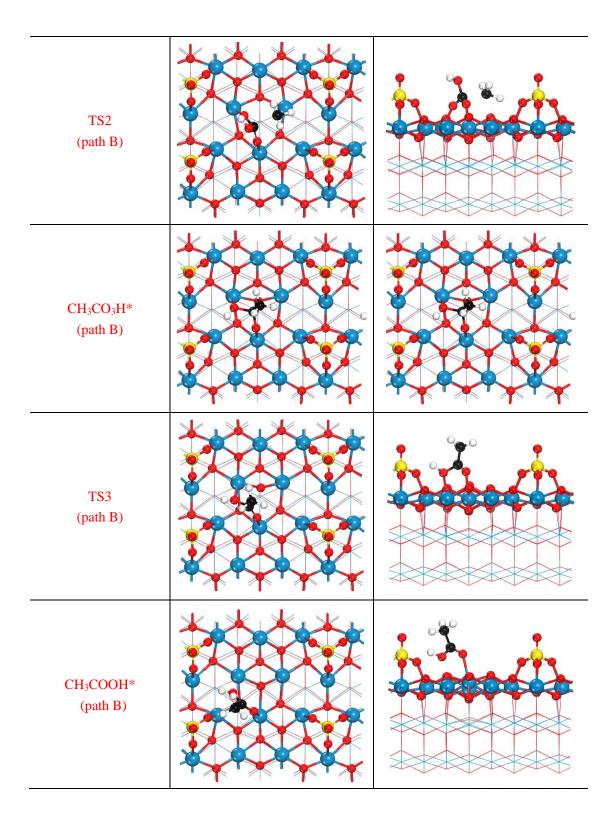
^c Reaction conditions: 1 atm, 500 °C, pure CH₄, 3000 cm³h⁻¹g_{cat}⁻¹

Fig. S5 ¹H NMR spectrum obtained from the co-conversion of CH_4 and CO_2 on SZ-3. Chemical shift of 2.08 ppm proves the formation of acetic acid.


Fig. S6 Structural models of ZrO_2 , ZrO_2 - SO_2 , ZrO_2 - $2SO_2$ and BA in the DTF calculations.




Fig. S7 PDH reaction over all catalysts. Reaction condition: $T=550^{\circ}$ C, P=1 atm, t=10 min, C₃H₈:N₂=20:80, *GHSV*=3000 cm³h⁻¹g_{cat}⁻¹.

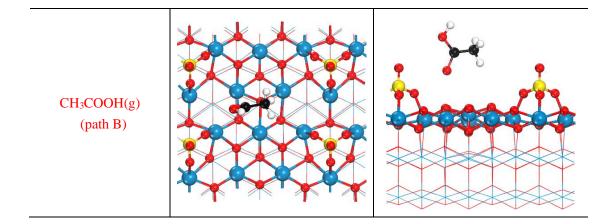

	TOP view	Side view
CH ₄ (g)+CO ₂ (g)		
CH4(g)+CO3*		
CH4*+CO3*		
TS1		

Table S3. Configurations for conversion CH_4 and CO_2 into acetic acid on ZrO_2 -2SO₂.

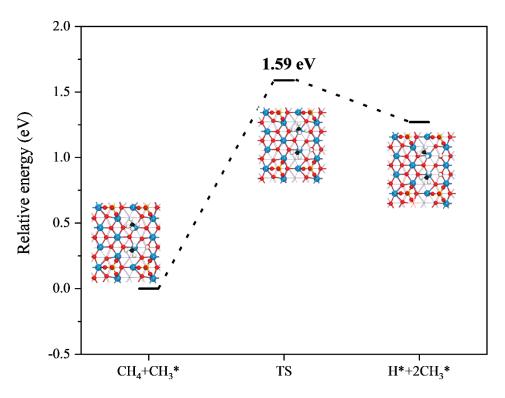


Fig. S8 Results for the second CH_4 dissociation on ZrO_2 -2SO₂ after the activation of first CH_4 .