Supporting Information

Green Fabrication of Hydrogel-Immobilized Au@Ag Nanoparticles Using Tannic Acid and Application in Catalysis

Hengxi Hea,b, Didier Astrucc,*, Haibin Gua,b,*

a Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China. E-mail: guhaibinkong@126.com (H. Gu)

b National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China.

c ISM, UMR CNRS No 5255, Univ. Bordeaux, 351 Cours de La Libération, 33405 Talence Cedex, France. didier.astruc@u-bordeaux.fr (D. Astruc)

Table of Contents

Figure S1. Diameter statistic of AuNPs, AgNPs, and Au@AgNPs \hspace{1cm} S2
Table S1. DLS results of three kinds of NPs \hspace{1cm} S2
Figure S2. The hole sizes of different PVA/TA hydrogels \hspace{1cm} S2
Figure S3. Tensile strength of PVA/0TA hydrogel, PVA/1TA hydrogel, PVA/2TA hydrogel, and PVA/3TA hydrogel \hspace{1cm} S3
Figure S4. Photographs of PVA+TA mixture without any treatment and treated with different repeated number freeze-thaw \hspace{1cm} S3
Figure S5. UV-vis. spectra of hydrogels soaking liquid after urea treated 72 h \hspace{1cm} S3
Figure S6. Original EDS mapping images of PVA/1TA-Au hydrogel and PVA/1TA-Au@Ag hydrogel \hspace{1cm} S4
Figure S7. UV-vis. spectrum of 2-NP aqueous solution \hspace{1cm} S4
Figure S1. Diameter statistic of (A) AuNPs, (B) AgNPs, and (C) Au@AgNPs used Nano Measurer 1.2.

Table S1. DLS results of three kinds of NPs

<table>
<thead>
<tr>
<th></th>
<th>Mean diameter (nm)</th>
<th>Zeta potential (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuNPs</td>
<td>21</td>
<td>-20.8</td>
</tr>
<tr>
<td>AgNPs</td>
<td>18</td>
<td>-30.1</td>
</tr>
<tr>
<td>Au@AgNPs</td>
<td>32</td>
<td>-23.2</td>
</tr>
</tbody>
</table>

Figure S2. The hole sizes of different PVA/TA hydrogels.
Figure S3. Tensile strength of (A) PVA/0TA hydrogel, (B) PVA/1TA hydrogel, (C) PVA/2TA hydrogel, and (D) PVA/3TA hydrogel after being soaked in different kinds of saturation salt solution.

Figure S4. Photographs of A) PVA+TA mixture without any treatment and B-E) PVA+TA mixture treated with different repeated number freeze-thaw.
Figure S5. UV-vis. spectra of hydrogels soaking liquid after urea treated 72 h.

Figure S6. Original images of EDS mapping. (A) PVA/1TA-Au hydrogel and (B) PVA/1TA-Au@Ag hydrogel.

Figure S7. UV-vis. spectrum of 2-NP aqueous solution.