Electronic Supplementary Information (ESI) for:

Colorimetric determination of xanthine with xanthine oxidase and WSe₂ nanosheets as a peroxidase mimic

Chengyi Hong^{1†}, Lingyan Guan¹, Lei Huang¹, Xiaoshan Hong¹, Zhiyong Huang¹

1. College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China.

[†] Corresponding author.

E-mail address: cyhong@jmu.edu.cn (C. Y. Hong).

Supporting Figures

Fig. S1. The UV-Vis absorption spectra of WSe_2 nanosheets after different sonication times.

Fig. S2. The AFM image of WSe₂ nanosheets.

Fig. S3. The XPS spectrum of WSe_2 nanosheets.

Fig. S4. The high-resolution transmission electron microscope of WSe₂ nanosheets.

Fig. S5. Effects of pH value on relative peroxidase mimic activity of WSe₂ nanosheets. Experiments were performed using WSe₂ nanosheets (30 μ g mL⁻¹) in 250 μ L NaAc-HAc (0.2 M) with TMB (1 mM) as substrate.

Fig. S6. Photos of WSe_2 nanosheets in NaAc-HAc buffer, PBS and serum.

Fig. S7. The stability of enzyme mimic of WSe_2 nanosheets for xanthine detection. The concentration of xanthine was 0.5 mM.

Materials	Substrate	$K_{\rm m}({\rm mM})$	$V_{\rm max}(10^{-8}{\rm Ms}^{-1})$	Ref.	
HRP	TMB	0.434 10.0 3.70 8.71		1	
	H_2O_2				
Pd nanoparticle	TMB	1.44	0.0024	2	
	H_2O_2	42.7 0.00389		2	
Ir nanoparticle	TMB	0.03	0.017	3	
	H_2O_2	18.02	0.081		
BSA-Au cluster	TMB	0.00253	6.23	4	
	H_2O_2	25.3	7.21	4	
Se-g-C ₃ N ₄ nanosheets	TMB	0.307	0.00205	-	
	H_2O_2	0.298	0.00433	5	
WO ₃ nanosheets	TMB	10.6	1.53	6	
	H_2O_2	1260	3		
Rh nanosheets	TMB	0.264	12.56	7	
	H_2O_2	4.51	68.09	1	
MoSe ₂ nanosheets	TMB	0.014	0.56	0	
	H_2O_2	0.155	0.99	8	
WSe ₂ nanosheets	TMB	0.205	1.25		
	H ₂ O ₂	0.746	0.484	I NIS WORK	

Table S1. Comparison of kinetic parameters of WSe_2 nanosheets and other materials.

Method	Dynamic range (uM)	Linear range	LOD	Real sample	Reference
Dd mon omorticlo	Talige (µWI)	(µWI)	(µW)	Lining	2
Pa nanoparticle	-	1-30	0.29	OTINE	Z
Ir nanoparticle	10-150	10-150	5.2	-	3
BSA-Au cluster	0-800	0.5-20	0.5	Urine, Serum	4
Se-g- C_3N_4 nanosheets	0-1600	0.16-40	0.016	Serum	5
WO ₃ nanosheets	0-400	25-200	1.24	Urine	6
					_
Rh nanosheets	0-500	2.0-80	0.73	-	7
MoSe ₂ nanosheets	0-1200	10-320	1.964	Serum	8
WC - non-theat	0 1000	10,500	4 27	C	This are als
w Se ₂ nanosneets	0-1000	10-500	4.37	Serum	This work

 Table S2. Comparison of previous methods for determination of xanthine.

References

1 L. Gao, J. Zhuang and L. Nie, Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, *Nat.Nanotechnol.*, 2007, **2**, 577-583.

2 W. J. Shi, H. Fan and S. Y. Ai, Pd nanoparticles supported on nitrogen, sulfur-doped three-dimensional hierarchical nanostructures as peroxidase-like catalysts for colorimetric detection of xanthine, *RSC Adv.*, 2015, **5**, 32183-32190.

3 M. Cui, J. Zhou and Y. Zhao, Facile synthesis of iridium nanoparticles with superior peroxidase-like activity for colorimetric determination of H_2O_2 and xanthine, *Sens. Actuators B Chem.*, 2017, **243**, 203-210.

4 X. X. Wang, Q. Wu and Z. Shan, BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection, *Biosens. Bioelectron.*, 2011, **26**, 3614-3619.

5 F. Qiao, J. Wang and S. Ai, As a new peroxidase mimetics: The synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H_2O_2 and xanthine, *Sens. Actuators B Chem.*, 2015, **216**, 418-427.

6 Z. Li, X. Liu and X. H. Liang, Colorimetric determination of xanthine in urine based on peroxidase-like activity of WO₃ nanosheets, *Talanta*, 2019, **204**, 278-284.

7 S. Cai, W. Xiao and H. Duan, Single-layer Rh nanosheets with ultrahigh peroxidase-like activity for colorimetric biosensing, *Nano Res.*, 2018, **011**, 6304-6315.

8 G. Yang, X. J. Wu and T. M. Chen, Few-layered $MoSe_2$ nanosheets as an efficient peroxidase nanozyme for highly sensitive colorimetric detection of H_2O_2 and xanthine, *J. Mater. Chem. B*, 2018, **6**, 105-111.