Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information (ESI).

High shear vortex fluidic morphologically controlled polysulfone formed under anhydrous conditions[†]

Aghil Igder^{a,b}, Ahmed Hussein Mohammed Al-Antaki^b, Scott J. Pye^b, Alireza Keshavarz^a, Colin L. Raston*^b, and Ata Nosrati^a

^{a.} School of Engineering, Edith Cowan University, Joondalup, Perth, WA 6027, Australia.

^{b.} Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia. E-mail: <u>colin.raston@flinders.edu.au</u>.

Contents

Experimental settings	.2
Heating unit calibration curve	.3
NMR spectra	.4
•	
Bisphenol A (BPA)	.4
4,4-Dichlorodiphenyl sulphone (DCDPS)	.5
Polysulfone (PSF)	.6
References	.7

Experimental settings

Test No	Speed, ω (rpm)	т (°С)	Tilt Angle, θ (°)	Time, t (min)	
\$1	3k	150	45	60	
S2	4k	150	45	60	
S 3	5k	150	45	60	
S4	6k (optimal)	150	45	60	
S 5	7k	150	45	60	
S 6	8k	150	45	60	
S7	6k	120	45	60	
S 8	6k	140	45	60	
S 9	6k	150	45	60	
S10	6k	160 (optimal)	45	60	
\$11	6k	170	45	60	
S12	6k	160	0	60	
\$13	6k	160	15	60	
S14	6k	160	30	60	
\$15	6k	160	45 (optimal)	60	
S16	6k	160	60	60	
\$17	6k	160	75	60	
S18	6k	160	90	60	
\$19	6k	160	45	15	
S20	6k	160	45	30	
\$21	6k	160	45	60 (optimal)	
S22	6k	160	45	180	

Table S 1. Experimental conditions for PSF synthesise using a nitrogen sealed VFD tube in the confined mode.

Heating unit calibration curve

Since there is a difference between the real temperature inside the tube and the temperature which is shown on the controller of the heating unit, the heating unit was calibrated by measuring the melting point of several compounds (Table S2).

Standard Sample	Reported Melting Point (°C)	Melting Point Machine (°C) (T in the tube)	Melting Point on the VFD (°C) T on the controller
Vanillin	81-88	81	88
Phenacetin	134	133.5	145
DCDPS	143-146	145	159
Citric Acid	153-159	152	163
BPA	158-159	155.5	168

 Table S 2. Reported and measured melting point of different materials using melting point measurement and heating unit controller

Table S 3. Calculated experiments temperatures.

y = 1.0747x + 1.231 R ² = 0.9985	T on the Controller (°C)	87	109	136	152	162	173	179	184	189
	T in the Tube (°C)	80	100	125	140	150	160	165	170	175

Figure S 2. (a) Experimental setup for distilling, and (b) keeping distilled DMSO under nitrogen.

NMR spectra

Bisphenol A (BPA)

Figure S 3. ¹H-NMR of BPA as a monomer in PSF polymerization, using DMSO-d6 as the NMR solvent.(<u>1</u>)

Figure S 4- ¹³C NMR of BPA as a monomer PSF polymerization, using DMSO-d6 as the NMR solvent.(<u>1</u>)

4,4-Dichlorodiphenyl sulphone (DCDPS)

Figure S 5. ¹H-NMR of DCDPS as the second monomer in PSF polymerization, using DMSO-d6 as the NMR solvent. (<u>1</u>)

Figure S 6. ¹³C-NMR of DCDPS as the second monomer in PSF polymerization, using DMSO-d6 as the NMR solvent.(<u>1</u>)

Figure S 8. ¹³C-NMR spectra of conventional synthesised PSF, using CDCl₃ as the NMR solvent.

Figure S 10. ¹³C-NMR spectra of VFD synthesised PSF at ω 6k rpm, T 160 °C, ϑ 45 tilt angle, and 60 min reaction time, using CDCl₃ as the NMR solvent.

References

1. Igder A, Pye S, Mohammed Al-Antaki AH, Keshavarz A, Raston CL, Nosrati A. Vortex fluidic mediated synthesis of polysulfone. RSC Advances. 2020;10(25):14761-7.