Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information

Lanthanide-based bis-(3,5-dicarboxy-phenyl)terephthalamide metalorganic frameworks: slow relaxation of magnetization and detection of trace Fe²⁺ and Fe³⁺

Qingfang Lin, Wen Xie, Zhihui Zong, Zicheng Liu, Yuqing Sun, Lili Liang*

Department of Chemistry, Bengbu Medical College, Bengbu 233030, P. R. China.

Contents:

- 1. TableS1 Selected Bond Lengths (Å) and Bond Angles ([°]) in 1-2.
- 2. Fig. S1 Powder XRD patterns of 1-2.
- 3. Fig. S2 TG-DSC curves of 1-2 under nitrogen.
- 4. Fig. S3 Solid state fluorescence spectrum of 1-2.
- 5. Fig. S4 SV plot of (a) 1 and (b) 2 by gradual addition of Fe^{2+}
- 6. Fig. S5 Temperature dependence of the in-phase (χ_M') ac susceptibility components measured at different frequencies for compound **1** at zero dc field and an oscillation of 2.5 Oe.
- 7. Fig. S6 Temperature dependence of the out-of-phase (χ_M'') ac susceptibility components measured at different frequencies for compound **1** at zero dc field and an oscillation of 2.5 Oe.
- 8. Fig. S7 Filed dependence of the out-of-phase (χ_M'') ac susceptibility components measured for compound **1** at 2 K from 0 Oe to 5000 Oe.
- 9. Fig. S8 Frequency dependence of the in-phase (χ_M') ac susceptibility components measured for compound **1** at 1000 Oe.
- 10. Fig. S9 Cole-Cole plots for 1

		1			
Dy1-O2	2.445(9)	Dy1-O1	2.395(9)	Dy1-O9	2.299(12)
Dy1-O10	2.450(8)	Dy1-O11	2.367(9)	Dy1-O8	2.345(14)
Dy1-O19	2.302(9)	Dy1-O18	2.257(8)	Dy2-O5	2.384(7)
Dy2-O4	2.292(8)	Dy2-O12	2.306(7)	Dy2-O13	2.332(8)
Dy2-O21	2.423(8)	Dy2-O20	2.419(8)	Dy2-O6	2.409(10)
Dy2-O7	2.417(10)				
O2-Dy1-O10	124.7(3)	O1-Dy1-O2	52.9(3)	O1-Dy1-O10	72.1(3)
O9-Dy1-O1	81.6(4)	O9-Dy1-O2	87.9(4)	O9-Dy1-O10	77.9(4)
O9-Dy1-O11	131.3(4)	O9-Dy1-O8	76.1(5)	O9-Dy1-O19	151.7(4)
011-Dy1-O2	114.7(4)	011-Dy1-O1	80.0(4)	O11-Dy1-O10	53.6(3)
O8-Dy1-O2	76.8(4)	08-Dy1-O1	125.4(4)	O8-Dy1-O10	145.3(4)
08-Dy1-011	148.3(4)	O19-Dy1-O2	80.3(3)	019-Dy1-O1	110.2(4)
019-Dv1-O10	129.8(3)	019-Dv1-011	76.9(3)	019-Dv1-O8	76.3(5)
O18-Dv1-O2	156.0(3)	018-Dv1-01	149.6(3)	O18-Dv1-O9	88.9(4)
018-Dv1-010	77.6(3)	018-Dv1-011	84.9(4)	018-Dv1-08	79.3(4)
018-Dv1-019	91.7(3)	05-Dv2-021	88.5(3)	05-Dv2-020	136.3(3)
05-Dv2-06	73.3(3)	05-Dv2-07	139.4(3)	04-Dv2-05	124.5(3)
04-Dv2-012	76.5(3)	04-Dv2-013	79,7(3)	04-Dv2-O21	133.9(3)
04-Dv2-020	81.8(3)	04-Dv2-06	142.2(3)	04-Dv2-07	79.8(3)
012-Dv2-05	77.5(3)	012-Dv2-013	123 5(3)	$012 - Dv^2 - 0.021$	147 8(3)
012-Dv2-020	146 1(3)	012-Dv2-06	75 9(3)	012-Dy2-07	78.0(3)
013-Dy2-020	75 4(3)	$012 - Dy^2 - 00$	79.1(3)	$012 - Dy^2 - 07$ $013 - Dy^2 - 020$	76.6(3)
013-Dy2-06	137 7(3)	013-Dy2-021	145 1(3)	$020 - Dy^2 - 020$	53 6(3)
013-Dy2-00	72 A(3)	$06-Dy^2-020$	143.1(3) 108 5(3)	06-Dy2-021	55.0(5) 69.6(4)
06-Dy2-021	95 5(3)	O6-Dy2-O20	727(3)	00-Dy2-07	07.0(4)
50-Dy2-021	15.5(5)	00-Dy2-020	12.1(3)		
Sm2-O6	2.394(2)	<u>2</u> Sm2-O5	2.314(2)	Sm2-07	2.450(2)
Sm2-012	2.337(2)	Sm2-013	2.311(2) 2 380(3)	Sm2-08	2.130(2) 2.444(2)
Sm2-020	2.337(3) 2 443(5)	Sm2-019	2.300(3) 2.430(3)	Sm2-0204	2.444(2) 2 400(5)
Sm1-014	2.445(3)	Sm2-017	2.430(3) 2.305(3)	Sm1 018	2.400(3)
Sm1-015	2.400(3)	Sm1-01	2.303(3)	Sm1-021	2.302(3)
Sm1-013	2.394(3)	Sm1-01	2.407(3)	Sm1-021	2.304(2)
Sm1-02	2.424(3)	Sm1-022	2.327(3)	Sm1-021A	2.303(3)
06 Sm2 07	2.424(3)	06 Sm2 08	2.527(5)	06 Sm2 020	2.303(3)
06.5m2.010	00.00(0)	06.5m2.0204	74.10(10)	00-3112-020	12.33(9)
06-Sm2-019	140.12(11)	06-Sm2-020A	74.10(10)	05-Sm2-06	125.72(9)
05-Sin2-0/	155.81(9)	05-5m2-012	142 (2/10)	05-5m2-013	79.37(9)
05-Sm2-08	82.14(9)	05-5m2-020	145.62(10)	05-5m2-019	19.99(11)
03-Sm2-020A	142.57(12)	012-Sm2-06	11.08(9)	012-Sm2-07	147.43(9)
012-Sm2-013	123.88(9)	012-Sm2-08	140.21(8)	012-Sm2-O20	/5.58(8)
012-Sm2-019	70.25(0)	012-Sm2-020A	15.17(9)	013-Sm2-06	126.24(10)
013-Sm2-07	19.35(9)	013-Sm2-08	/0./8(9)	013-Sm2-020	130.34(10)
013-Sm2-019	144.94(10)	013-Sm2-O20A	137.65(12)	08-Sm2-07	53.21(8)
020-Sm2-07	72.09(9)	020-Sm2-08	109.06(8)	019-Sm2-07	95.22(10)
019-Sm2-O8	72.56(10)	019-Sm2-O20	/1.33(11)	020A-Sm2-07	/2.03(10)
020A-Sm2-08	107.90(8)	020A-Sm2-019	69.64(12)	017-Sm1-O14	/9.00(9)
017-Sm1-O15	85.54(12)	017-Sm1-O1	156.09(11)	017-Sm1-O21	91.21(8)
017-Sm1-O2	150.49(11)	O17-Sm1-O22	80.29(13)	017-Sm1-O21A	85.82(9)
018-Sm1-O14	130.36(10)	O18-Sm1-O17	89.72(10)	018-Sm1-O15	78.22(11)
O18-Sm1-O1	80.16(10)	O18-Sm1-O21	151.38(9)	O18-Sm1-O2	112.16(12)
O18-Sm1-O22	74.35(14)	O18-Sm1-O21A	148.48(11)	O15-Sm1-O14	52.99(9)
O15-Sm1-O1	113.07(12)	O15-Sm1-O2	80.20(12)	O1-Sm1-O14	123.87(10)
O21-Sm1-O14	77.73(7)	O21-Sm1-O15	130.36(8)	O21-Sm1-O1	87.69(8)
O21-Sm1-O2	78.94(10)	O2-Sm1-O14	71.76(10)	O2-Sm1-O1	52.22(11)
O22-Sm1-O14	147.25(12)	O22-Sm1-O15	149.04(13)	O22-Sm1-O1	76.14(14)
O22-Sm1-O21	77.63(11)	O22-Sm1-O2	123.51(13)	O22-Sm1-O21A	74.14(13)

Table S1 Selected bond lengths (Å) and bond angles ($\ensuremath{^\circ}$ in 1-2

Fig. S1 Powder XRD patterns for **1** and **2**: (a) simulated, (b) synthesized, (c) after soaked in DMF, (d) after soaked in water, (e) after soaked in aqueous solution of Fe^{2+} and Fe^{3+} .

Fig. S2 TGA-DSC curves of 1 and 2 under nitrogen

Fig. S3 Solid state fluorescence spectrum of 1 and 2

Fig. S4 (a) SV plot of (a) 1 and (b) 2 by gradual addition of Fe²⁺ (0 – 250 μ M) in DMF

Fig. S5 Temperature dependence of the in-phase (χ_M') ac susceptibility components measured at different frequencies for compound 1 at zero dc field and an oscillation of 2.5 Oe.

Fig. S6 Temperature dependence of the out-of-phase (χ_M ") ac susceptibility components measured at different frequencies for compound 1 at zero dc field and an oscillation of 2.5 Oe.

Fig. S7 Filed dependence of the out-of-phase (χ_M ") ac susceptibility components measured for compound 1 at 2 K from 0 Oe to 5000 Oe.

Fig. S8 Frequency dependence of the in-phase (χ_M') ac susceptibility components measured for compound 1 at 1000 Oe.

Fig. S9 Cole-Cole plots for 1