Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information[†]

Preparation and characterization of a copper oxide nanoparticle-supported red-mud catalyst for liquid phase oxidation of ethyl benzene to acetophenone [†]

Subhashree Mishra,^a Simon Watre Sangma,^a Rajaram Bal,^{b*} Ratan Kumar Dey^{a*}

^aDepartment of Chemistry, Central University of Jharkhand (CUJ), Ranchi – 835 205, India,

E-mail:rkdey@rediffmail.com; ratan.dey@cuj.ac.in,Tel:+91-671-2953002

^bCatalytic Conversion & Processes Division, CSIR–Indian Institute of Petroleum (IIP), Dehradun–248005, India, E-mail: raja@iip.res.in; Tel: +91–135–2525797.

Fig. S2 DTA-TGA curve of RM and AARM and CuO AARM (uncalcined).

Fig. S3 H₂-TPR analysis of CuO_AARM and CuO_Comm. Fe₂O₃.

Fig. S4 N₂ adsorption/desorption isotherms for RM, AARM, CuO_AARM.

Fig. S5 Distribution of pore diameters in RM, AARM and CuO_AARM.

Fig. S6 TEM images (a, c, & e) and HR-TEM (b, d, & f) of RM, AARM and CuO_AARM respectively; the inset images of (a), (c), and (e) show the SAED pattern of the corresponding samples

EDAX analysis and mapping of RM, AARM and CuO_AARM (catalyst) materials

Fig. S7(a) Elemental analysis of Red Mud (RM)

Fig. S7(b) Elemental analysis of AARM

Fig. S7(c) Elemental analysis of CuO_AARM

500nm

٦

Ti Kα1

500nm

Ca Kα1

500nm

Ο Κα1

500nm

500nm

Na Kα1_2

Si Kα1

500nm

Fig. S7(d) Elemental mapping of RM

Al Kα1

Si Kα1

٦

500nm

Ti Kα1

500nm

٢

500nm

Γ_____1µm

Fig. S7(f) Elemental mapping of CuO-AARM

-

Fig. S8 Average particle size of CuO_AARM

Fig. S9 XPS spectra: deconvolution of (a) Fe 2p fresh and spent catalyst, (b) Ti 2p fresh and spent catalyst, (c) Fresh and spent catalyst of Cu 2p, and (d) fresh and spent spectra of O1s.

Fig. S10 XPS spectra of: Al 2s (a) fresh (b) spent catalyst; Si 2s (a) fresh (b) spent catalyst

Fig. S11(a) Kinetic plot of $ln(q_e-q_t)$ vs. t (pseudo 1st order) at different temperatures

Fig. S11(b) Arrhenius plot (plot of $\ln k_1 vs. T^{-1}$)

Catalyst	Solvent	Reaction condition	Conversion	Selectivity of acetophenone	Selectivity of benzaldehyde
-	Acetone	45 °C, 2mol, 50wt% H ₂ O ₂ , 12h	22%	45%	7%
	H ₂ O	75 °C, 2mol, 50 wt% H ₂ O ₂ , 12h	47%	55%	10%
CuO_AARM	Acetonitrile	75 °C, 2mol, 50 wt% H ₂ O ₂ , 12h	86%	74%	8.33%
	H ₂ O and Acetonitrile (1:1)	75 °C, 2 mol, 50 wt% H ₂ O ₂ , 12h	69%	68%	10%

Table S1. Activities of catalyst with variation of solvents

Table S2. Comparative aspects with commercial materials (literature reported)

Sl No.	Catalyst(s)	Solvent	Reaction Condition(s)	Conversion/Selectivity/ Yield (%)	Ref.
1	Ag/ZnO	Solvent-free	80 °C, 1-mol H ₂ O _{2,} 7 h	90/-/90	13
2	Pd/g-C ₃ N ₄ - rGO	Acetonitrile	80 °C, 4-mol TBHP, 24 h	67/97/-	6
3	MnFeSi Composite	Acetone	50 °C, 1mol H ₂ O ₂ ,6 h	5.5/>90/-	9
4	Co-Cu Mixed metal oxide	Solvent-free	120 °C, 3-mol TBHP,12 h Nitrogen atmosphere	92.8/89.4/-	16
5	Phenyl group incorporated supported Co_3O_4 oxide	Solvent-free	120 °C, 10 bar, 6 h	55.1/86.1/-	43
6	CuO_AARM	Acetonitrile	75°C, 2-mol H ₂ O ₂ 12 h.	86/74/-	Present work

Sl. No.	Temperature (°C)	∆G° (J mol ⁻¹)	∆H° (J mol ⁻¹)	ΔS° (J mol ⁻¹ K ⁻ ¹)
	55	-10217.3		
1.				
2.	75	-12393.7	21430.0	96.7
3.	95	-14066.7	-	

 Table S3. The Thermodynamics table

 Table S4. DFT calculation table

	Vacuum (E _h)	Acetonitrile (E _h)	Solvation Energy (E _h)
1	-310.658068	-310.6631656	-0.00509755
2	-385.8751983	-385.885636	-0.01043773
2'	-310.0303283	-310.0349634	-0.00463509
3	-385.8703337	-385.8819787	-0.01164493
3'	-310.0060882	-310.010919	-0.00483071
4	-385.2179098	-385.228023	-0.01011317
5	-345.4223515	-345.4320303	-0.00967878
6	-115.6812063	-115.6896159	-0.00840953
7	-461.0016336	-461.0156316	-0.013998
8	-384.7034132	-384.7139126	-0.0104994
H ₂ O ₂	-151.5466169	-151.5593912	-0.01277425
OH.	-75.74340475	-75.75107048	-0.00766573
H ₂ O	-76.42241691	-76.43491747	-0.01250056
H ₂	-1.17431929	-1.17468111	-0.00036182
Н	-0.498762812	-0.498919271	-0.000156459

$1 \rightarrow 2'$	81.12539416	kcal/mol
$1 \rightarrow 3'$	96.21337121	kcal/mol
\mathbf{S}_1	367.6228145	kcal/mol
S_2	-16.46189488	kcal/mol
S_3	-89.45225946	kcal/mol
S_4	20.23323811	kcal/mol
S_5	-66.52446072	kcal/mol
S_6	-161.5161849	kcal/mol

Scheme S1. Pictorial representation of synthesis procedure (hydrothermal technique)

Scheme S2. Decomposition of H_2O_2 in presence of Fe

$$Fe^{2+} + H_2O_2 \to OOH^{-} + H^{-} \qquad i)$$

$$Fe^{2+} + H_2O_2 \to OH^{-} + OH^{-} \qquad ii)$$

$$OH^{\cdot} + OH^{\cdot} \rightarrow H_2O + O^{\cdot}$$
 iii)

Scheme S3. Pictorial (videography) presentation of formation of acetophenone using DFT calculation.