Supporting Information for

Development of a highly selective fluorescent probe for the rapid detection of HClO in living cells and zebrafish

Xing Liang, Yonghui Huo, Jun Yan, Ling Huang, Weiying Lin*

Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China

Table of contents

Scheme S1. The synthesis of fluorescent probe BM-HA.	83
Fig. S1. DFT optimized structures	83
Fig. S2. The influence of different solvent system on the fluorescence intensity	83
Fig. S3. Reaction-time profile	S 4
Fig. S4. The time-dependent fluorescence spectra	S 4
Fig. S5. UV-vis spectra	S4
Fig. S6. The liquid fluorescence image	85
Fig. S7. Absorption spectra and emission spectra of BM , BM-HA and BM-HA + HCl	
Fig. S8. Fluorescence spectra of various relevant species	S5
Fig. S9. The effects of pH on the fluorescence intensity	86
Table S1. The absorption and emission values of functional calculation and experiment of BM	.86
Table S2. The experimental and calculated absorption and fluorescence emission of BM	86
Table S3. The contribution percentage of each atom to HOMO, LUMO orbitals	S 7
Table S4. The contribution percentage of molecular fragment to HOMO, LUMO orbitals	
Fig. S10. The atomic numbers of BM-HA and BM	
Fig. S11. Experimental and theory calculated fluorescence spectra of the compound BM	88
Fig. S12. Cytotoxicity assays of probe at different concentrations for HeLa cells	89
Fig. S13 Fig. S16. ¹ H NMR, ¹³ C NMR, and HRMS spectra	S10

Scheme S1. The synthesis of fluorescent probe BM-HA.

Fig. S1. DFT optimized structures and molecular orbital plots (LUMO and HOMO) of dyes BM and 1-4.

Fig. S2. The influence of different solvent system on the fluorescence intensity of probe BM-HA $(10.0\mu M)$ with HClO $(30.0\mu M)$.

Fig. S3. Reaction-time profile of the probe BM-HA (10.0 μ M) responses to HClO (30.0 μ M). Fluorescence signals with $\lambda_{ex} = 440$ nm, $\lambda_{em} = 490$ nm.

Fig. S4. The time-dependent fluorescence spectra of the probe **BM-HA** (10.0 μ M) responses to HClO (40.0 μ M). Fluorescence signals with $\lambda_{ex} = 440$ nm, $\lambda_{em} = 490$ nm.

Fig. S5. UV-vis spectra of the probe BM-HA (10.0 μ M) treated with different concentrations of HClO.

Fig. S6. The liquid fluorescence image of the probe **BM-HA** in the absence and presence of HClO in PBS buffer pH 7.4 that contained 1 % DMF, the left picture represented irradiation with natural light, the right picture showed irradiation with ultraviolet laser.

Fig. S7. Absorption spectra (a) and emission spectra (b) of the Compound **BM** (black line), the probe **BM-HA** (red line) and the probe **BM-HA** + HClO (green line).

Fig. S8. Fluorescence spectra of the probe **BM-HA** (10.0 μ M) to HClO (40.0 μ M) over various relevant species (all 40.0 μ M). Data shown in turn: blank, HClO, Cys, Hcy, H₂O₂, MgCl₂, Co²⁺, NaNO₂, Zn²⁺, SO₃²⁻, F⁻, HCO₃⁻, AgNO₃, Br⁻, Ca²⁺, CuSO₄, Fe³⁺, GSH, HSO₃⁻, KI, OH, PO₄³⁻, t-butylhydroperoxide, CH₃COOOH, O₂⁻, ONOO⁻, NO, respectively.

Fig. S9. The effects of pH on the fluorescence intensity of the probe **BM-HA** (10.0 μ M) for HClO (40.0 μ M).

Table S1. Compare the absorption and emission values of several functionals calculation and experiment of the compound **BM**.

	PBEPBE (nm)	CAM-B3LYP (nm)	B3PW91 (nm)	M062X (nm)	B3LYP (nm)	Experiment (nm)
absorption	435.15 nm	338.05nm	379.65 nm	337.80 nm	381.76 nm	440 nm
emission	527.65 nm	440.27 nm	476.64 nm	441.28 nm	482.34 nm	490 nm

Table S2. Comparison of experimental and calculated absorption and fluorescence emission for the compound **BM**.

		electronic transition	f^{a}	contrib	Calculation (nm)
BM	absorption	$S_0 \rightarrow S_1$	0.9707	HOMO→LUMO	381.76 nm
	emission	$S_1 \rightarrow S_0$	1.3103	LUMO→HOMO	482.34 nm

Table S3. The contribution percentage of each atom to HOMO, LUMO orbitals of compounds **BM-HA** and **BM**.

	BM	1-FA		BM		
Atomic number	HOMO (%)	LUMO (%)	Atomic number	HOMO (%)	LUMO (%)	
C1	1.93	1.80	C1	4.94	2.08	
C2	3.33	7.46	C2	6.98	6.73	
C3	0.72	2.60	C3	2.94	1.67	
C4	1.37	5.11	C4	3.92	4.82	
C5	0.92	4.57	C5	8.80	4.05	
C6	0.42	6.39	C6	3.13	6.58	
C7	0.35	3.38	C7	0.61	2.91	
C8	0.56	4.10	C8	2.58	3.15	
С9	2.02	11.97	C9	10.84	10.41	
C10	0.81	20.02	C10	4.60	20.95	
011	0.25	2.93	011	5.28	2.04	
C12	0.80	6.13	C12	4.17	7.45	
N13	0.91	6.04	N13	5.33	7.41	
C14	0.99	1.13	C14	5.73	1.45	
C15	0.90	1.53	C15	5.39	1.90	
S16	0.43	3.68	S16	3.20	3.46	
C17	0.45	1.79	C17	2.45	2.20	
C18	0.49	0.54	C18	3.04	0.64	
C19	0.11	2.07	C19	6.08	2.63	
C20	0.23	0.80	C20	1.20	0.91	
O21	1.73	1.30	O21	6.37	2.77	
C22	4.65	0.57	H22	0.36	0.10	
N23	1.09	0.08	H23	0.18	0.07	
C24	1.39	0.02	H24	0.18	0.59	
C25	0.73	0.04	H25	0.24	2.12	
S26	67.43	0.49	H26	0.15	0.21	
H27	0.15	0.08	H27	0.22	0.03	
H28	0.05	0.16	H28	0.50	0.27	
H29	0.01	0.58	H29	0.04	0.05	
H30	0.04	1.97	H30	0.39	0.18	
H31	0.03	0.17				
H32	0.03	0.03				
H33	0.09	0.21				
H34	0.01	0.06				
H35	0.41	0.01				
H36	0.83	0.01				
H37	0.29	0.01				
H38	0.05	0.01				
H39	0.04	0.02				
H40	0.08	0.01				

	В	M-FA	BM		
Molecular fragment	HOMO (%)	LUMO (%)	Molecular fragment	HOMO (%)	LUMO (%)
benzothiazole	6.41	24.18	benzothiazole	37.5	28.61
coumarin	12.93	73.12	coumarin	55.58	68.27
dimethylcarbamosulfonyl	78.72	2.57	Hydroxyl	6.76	2.95

Table S4. The contribution percentage of molecular fragment to HOMO, LUMO orbitals of compounds BM-HA and BM.

BM-HA atomic number

BM atomic number

Fig. S10. The atomic numbers of the probe (a) BM-HA and the compound (b) BM.

Fig. S11. Experimental and theory calculated fluorescence spectra of the compound BM.

Fig. S12. Cytotoxicity assays of probe at different concentrations for HeLa cells.

Fig. S13. ¹H NMR spectra of the compound BM in DMSO-*d*6.

Fig. S14. ¹H NMR spectra of the compound BM-HA DMSO-*d*6.

Fig. S15. ¹³C NMR spectra of the compound BM-HA in CDCl₃.

Fig. S16. HRMS spectra of the compound BM-HA.