# **Supplementary Material**

# ESIPT on/off switching and crystallization-enhance emission properties of new design phenol-pyrazole modified cyclotriphosphazenes

Ceylan Mutlu Balci\*<sup>1</sup>, Süreyya Oğuz TÜMAY, <sup>1</sup> Serap Beşli<sup>1</sup>

<sup>1</sup>Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkey

\* Corresponding author

Dr. Ceylan MUTLU BALCI

Department of Chemistry, Gebze Technical University, Gebze, Kocaeli 41400, Turkey

Tel.: 90 262 6053111 Fax: 90 262 6053005 E-mail: ceylanmutlu@gtu.edu.tr

## CONTENTS

| Figure S1  | a) <sup>1</sup> H NMR spectrum of compound <b>3</b> b) $D_2O$ exchange <sup>1</sup> H NMR                     |   |  |  |
|------------|---------------------------------------------------------------------------------------------------------------|---|--|--|
|            | spectrum of compound <b>3</b> .                                                                               |   |  |  |
| Table S1.  | Some bond and conformational parameters of compounds 3 and 4                                                  |   |  |  |
| Figure S2. | The conformation of $P_3N_3$ ring for a) compound <b>3</b> and b) compound <b>4</b>                           |   |  |  |
| Figure S3. | UV-Vis absorption spectra of 3 in a) hexane, b) THF, c)                                                       | 6 |  |  |
|            | dichloromethane, d) acetonitrile, e) ethanol, f) water and g) normalized                                      |   |  |  |
|            | UV-Vis absorption spectra of 1 in different solvents and concentrations.                                      |   |  |  |
| Figure S4. | UV-Vis absorption spectra of 4 in a) hexane, b) THF, c)                                                       | 7 |  |  |
|            | dichloromethane, d) acetonitrile, e) ethanol, f) water and g) normalized                                      |   |  |  |
|            | UV-Vis absorption spectra of <b>2</b> in different solvents and concentrations.                               |   |  |  |
| Figure S5. | Fluorescence spectra of <b>3</b> in <b>a</b> ) hexane, <b>b</b> ) THF, <b>c</b> ) dichloromethane, <b>d</b> ) | 8 |  |  |
| 8          | acetonitrile e) ethanol and f) water g) normalized UV-Vis absorption                                          |   |  |  |
|            | spectra of 1 in different solvents and concentrations ( $\lambda = 265 \text{ nm}$ )                          |   |  |  |
| Figure SC  | Spectra of <b>1</b> in different solvents and concentrations ( $n_{ex}$ =205 mil).                            | 0 |  |  |
| rigure so. | Fluorescence spectra of 4 in a) nexane, b) THF, c) dictiononethane, d)                                        | 9 |  |  |
|            | acetonitrile, e) ethanol, and i) water g) normalized $\cup v - v$ is absorption                               |   |  |  |
|            | spectra of 2 in different solvents and concentrations ( $\lambda_{ex}=265$ nm).                               |   |  |  |
| Figure S7. | Fluorescence spectra of 2 in a) dichloromethane, b) ethanol, and g)                                           | 9 |  |  |
|            | normalized UV-Vis absorption spectra of 1 in dichloromethane and                                              |   |  |  |
|            | ethanol.                                                                                                      |   |  |  |



Fig. S1. a) <sup>1</sup>H NMR spectrum of compound 3 b)  $D_2O$  exchange <sup>1</sup>H NMR spectrum of compound

.

#### Table S1. Some

### bond and

| conformational                    |                                    | 3          | 4          |
|-----------------------------------|------------------------------------|------------|------------|
|                                   | Bond Lenghts                       |            |            |
| compounds <b>3</b> and <b>4</b> . | P1-N1                              | 1.561(2)   | 1.574(10)  |
|                                   | P2-N2                              | 1.573(2)   | 1.572(10)  |
|                                   | P3-N3                              | 1.582(2)   | 1.571(9)   |
|                                   | N1-P2                              | 1.582(2)   | 1.597(8)   |
|                                   | N2-P3                              | 1.565(2    | 1.572(10)  |
|                                   | N3-P1                              | 1.561(2)   | 1.597(11)  |
|                                   | P1-N4                              | 1.675(2)   | 1.669(11)  |
|                                   | P1-N6                              | 1.703(2)   |            |
|                                   | P1-01                              |            | 1.605(8)   |
|                                   | P2-O2                              |            | 1.614(9)   |
|                                   | P2-O3                              | 1.5778(18) | 1.592(8)   |
|                                   | P2-O4                              | 1.5708(19) |            |
|                                   | P3-O4                              |            | 1.591(8)   |
|                                   | P3-O5                              | 1.5758(19) | 1.597(8)   |
|                                   | P3-O6                              | 1.5828(18) |            |
|                                   | Bond Angles                        |            |            |
|                                   | N1-P2-N2                           | 117.54(12) | 119.5(6)   |
|                                   | N2-P3-N3                           | 117.14(11) | 119.4(6)   |
|                                   | N3-P1-N1                           | 119.74(12) | 119.6(5)   |
|                                   | P1-N1-P2                           | 120.00(13) | 119.9(6)   |
|                                   | P2-N2-P3                           | 122.65(14) | 121.1(6)   |
|                                   | P3-N3-P1                           | 119.70(14) | 120.5(7)   |
|                                   | Torsion Angles                     |            |            |
|                                   | P1-N1-P2-N2                        | -4.4(2)    | 1.7(11)    |
|                                   | N1-P2-N2-P3                        | 9.7(2)     | -3.0(11)   |
|                                   | P2-N2-P3-N3                        | 0.1(2)     | 3.4(11)    |
|                                   | N2-P3-N3-P1                        | -15.5(2)   | -2.6(11)   |
|                                   | P3-N3-P1-N1                        | 21.0(2)    | 1.5(11)    |
|                                   | N3-P1-N1-P2                        | -10.7(2)   | -1.0(10)   |
|                                   | Puckering                          | 0.1918(16) | Planar     |
|                                   | amplitude, Q                       |            |            |
|                                   | for P <sub>3</sub> N <sub>3</sub>  |            |            |
|                                   | Max.                               | -0.123(2)  | -0.017(11) |
|                                   | <b>Deviation for</b>               | (N3)       | (N2)       |
|                                   | P <sub>3</sub> N <sub>3</sub> ring |            |            |

parameters of



Fig. S2. The conformation of  $P_3N_3$  ring for a) compound 3 and b) compound 4.



Fig. S3. UV-Vis absorption spectra of 3 in a) hexane, b) THF, c) dichloromethane, d) acetonitrile, e) ethanol, f) water and g) normalized UV-Vis absorption spectra of 3 in different solvents and concentrations.



**Fig. S4**. UV-Vis absorption spectra of **4** in **a**) hexane, **b**) THF, **c**) dichloromethane, **d**) acetonitrile, **e**) ethanol, **f**) water and **g**) normalized UV-Vis absorption spectra of **4** in different

solvents and concentrations.



Fig. S5. Fluorescence spectra of 3 in a) hexane, b) THF, c) dichloromethane, d) acetonitrile, e) ethanol, and f) water g) normalized UV-Vis absorption spectra of 3 in different solvents and

concentrations ( $\lambda_{ex}$ =265 nm).



Fig. S6. Fluorescence spectra of 4 in a) hexane, b) THF, c) dichloromethane, d) acetonitrile, e) ethanol, and f) water ( $\lambda_{ex}$ =265 nm).



Fig. S7. Fluorescence spectra of 2 in a) dichloromethane, b) ethanol, and c) normalized fluorescence spectra of 2 in dichloromethane and ethanol.