Supporting Information for the article

REGULATION OF $\pi \cdots \pi$ STACKING INTERACTIONS BETWEEN TRIIMIDAZOLE LUMINOPHORES AND COMPREHENSIVE EMISSION QUENCHING BY COORDINATION TO Cu(II)

Elena Melnic,¹ Victor Ch. Kravtsov,¹ Elena Lucenti,² Elena Cariati,^{2,3} Alessandra Forni,² Nikita Siminel,¹ Marina S. Fonari,^{1,*}

E-mails: <u>elena.melnic@ifa.md</u>; <u>victor.kravtsov@ifa.md</u>; <u>elena.lucenti@istm.cnr.it</u>; <u>elena.cariati@unimi.it</u>; <u>alessandra.forni@scitec.cnr.it</u>; <u>siminel.n@gmail.com</u>; <u>marina.fonari@ifa.md</u>

¹Institute of Applied Physics, Academy str., 5 MD2028, Chisinau, R. Moldova. ²Institute of Sciences and Chemical Technologies "Giulio Natta" (SCITEC) of CNR and INSTM RU, via Golgi 19, 20133 Milano, Italy.

³Dipartimento di Chimica, Università degli Studi di Milano and INSTM RU, via Golgi 19, 20133 Milano, Italy.

Fable S1. Selected bond lengths ((Å) ir	n coordination metal	environment in 1-8.
--	--------	----------------------	---------------------

1			
Cu(1)-N(1)	2.213(6)	Cu(1)-O(3)	1.972(5)
Cu(1)-O(1)	1.960(5)	Cu(1)-O(4)	1.951(6)
Cu(1)-O(2)	1.952(4)		
O(1)-Cu(1)-N(1)	89.6(2)	O(4)-Cu(1)-O(1)	89.6(2)
O(2)-Cu(1)-N(1)	96.26(19)	O(4)-Cu(1)-N(1)	95.1(2)
O(2)-Cu(1)-O(4)	168.6(2)	O(3)-Cu(1)-O(1)	89.5(2)
O(2)-Cu(1)-O(3)	89.4(2)	O(3)-Cu(1)-N(1)	102.0(2)
O(2)-Cu(1)-O(1)	89.6(2)	O(4)-Cu(1)-O(3)	89.2(2)
	•	2	
Cu(1)-O(1)	1.973(4)	Cu(1)-O(4)	1.968(4)
Cu(1)-O(2)	1.960(4)	Cu(1)-N(1)	2.240(4)
Cu(1)-O(3)	1.973(4)		
O(1)-Cu(1)-O(3)	168.7(1)	O(4)-Cu(1)-O(3)	89.4(2)
O(1)-Cu(1)-N(1)	99.6(2)	O(4)-Cu(1)-N(1)	89.7(2)
O(2)-Cu(1)-O(4)	168.2(2)	O(2)-Cu(1)-N(1)	101.9(2)
O(2)-Cu(1)-O(1)	91.1(2)	O(3)-Cu(1)-N(1)	91.7(2)
O(2)-Cu(1)-O(3)	88.0(2)	O(4)-Cu(1)-O(1)	89.2(2)
		3	
Cu(1)-O(1A)	2.02(2)	Cu(4)-O(6B)	1.93(2)
Cu(1)-O(3A)	1.97(2)	Cu(4)-O(2B)	1.95(2)
Cu(1)-O(5A)	1.94(2)	Cu(4)-O(8B)	1.96(3)
Cu(1)-O(7A)	1.92(3)	Cu(4)-O(4B)	2.04(2)
$Cu(1)-N(1B)^{f}$	2.19(2)	Cu(4)-N(3B)	2.19(2)
Cu(2)-O(6A)	1.94(2)	Cu(5)-O(3C)	1.952(14)
Cu(2)-O(8A)	1.95(2)	Cu(5)-O(7C)	1.958(14)
Cu(2)-O(4A)	1.99(2)	Cu(5)-O(5C)	1.958(14)
Cu(2)-O(2A)	2.05(2)	Cu(5)-O(1C)	1.97(2)

Cu(2)-N(1A)	2.13(3)	Cu(5)-O(1w)	2.11(2)		
Cu(1)-Cu(2)	2.636(3)	Cu(6)-O(8C)	1.950(14)		
Cu(3)-O(1B)	2.00(2)	Cu(6)-O(2C)	1.965(14)		
Cu(3)-O(3B)	1.98(3)	Cu(6)-O(4C)	1.987(13)		
Cu(3)-O(5B)	1.99(2)	Cu(6)-O(6C)	1.986(14)		
Cu(3)-O(7B)	1.90(2)	Cu(6)-N(1C)	2.21(2)		
Cu(3)-N(3A)	2.22(3)				
O(7A)-Cu(1)-O(5A)	89.0(12)	O(6B)-Cu(4)-O(2B)	170.1(10)		
O(7A)-Cu(1)-O(3A)	166.3(10)	O(6B)-Cu(4)-O(8B)	91.7(11)		
O(5A)-Cu(1)-O(3A)	89.0(11)	O(2B)-Cu(4)-O(8B)	88.8(11)		
O(7A)-Cu(1)-O(1A)	89.5(11)	O(6B)-Cu(4)-O(4B)	89.1(11)		
O(5A)-Cu(1)-O(1A)	174.3(10)	O(2B)-Cu(4)-O(4B)	87.8(10)		
O(3A)-Cu(1)-O(1A)	91.2(10)	O(8B)-Cu(4)-O(4B)	164.3(10)		
$O(7A)-Cu(1)-N(1B)^{f}$	96.9(11)	O(6B)-Cu(4)-N(3B)	96.5(10)		
$O(5A)-Cu(1)-N(1B)^{f}$	89.6(9)	O(2B)-Cu(4)-N(3B)	93.2(10)		
$O(3A)-Cu(1)-N(1B)^{f}$	96.6(9)	O(8B)-Cu(4)-N(3B)	99.5(10)		
$O(1A)-Cu(1)-N(1B)^{f}$	96.0(9)	O(4B)-Cu(4)-N(3B)	96.0(10)		
O(6A)-Cu(2)-O(8A)	91.0(11)	O(3C)-Cu(5)-O(7C)	168.6(14)		
O(6A)-Cu(2)-O(4A)	84.4(11)	O(3C)-Cu(5)-O(5C)	93.5(13)		
O(8A)-Cu(2)-O(4A)	169.1(10)	O(7C)-Cu(5)-O(5C)	87.4(13)		
O(6A)-Cu(2)-O(2A)	162.7(10)	O(3C)-Cu(5)-O(1C)	92.3(14)		
O(8A)-Cu(2)-O(2A)	87.2(10)	O(7C)-Cu(5)-O(1C)	85.2(15)		
O(4A)-Cu(2)-O(2A)	94.3(10)	O(5C)-Cu(5)-O(1C)	169.9(14)		
O(6A)-Cu(2)-N(1A)	100.1(10)	O(3C)-Cu(5)-O(1w)	93.6(10)		
O(8A)-Cu(2)-N(1A)	92.9(10)	O(7C)-Cu(5)-O(1w)	97.4(11)		
O(4A)-Cu(2)-N(1A)	97.7(11)	O(5C)-Cu(5)-O(1w)	101.5(10)		
O(2A)-Cu(2)-N(1A)	97.2(10)	O(1C)-Cu(5)-O(1w)	86.3(10)		
O(7B)-Cu(3)-O(3B)	171.1(10)	O(8C)-Cu(6)-O(2C)	87.7(13)		
O(7B)-Cu(3)-O(5B)	91.7(11)	O(8C)-Cu(6)-O(4C)	168.8(13)		
O(3B)-Cu(3)-O(5B)	91.3(11)	O(2C)-Cu(6)-O(4C)	87.8(12)		
O(7B)-Cu(3)-O(1B)	85.4(11)	O(8C)-Cu(6)-O(6C)	89.2(12)		
O(3B)-Cu(3)-O(1B)	89.8(11)	O(2C)-Cu(6)-O(6C)	167.6(13)		
O(5B)-Cu(3)-O(1B)	166.5(10)	O(4C)-Cu(6)-O(6C)	93.0(13)		
O(7B)-Cu(3)-N(3A)	93.6(11)	O(8C)-Cu(6)-N(1C)	93.6(11)		
O(3B)-Cu(3)-N(3A)	94.5(11)	O(2C)-Cu(6)-N(1C)	98.5(10)		
O(5B)-Cu(3)-N(3A)	93.0(10)	O(4C)-Cu(6)-N(1C)	97.3(11)		
O(1B)-Cu(3)-N(3A)	100.3(10)	O(6C)-Cu(6)-N(1C)	93.7(10)		
	•	4	•		
Cu(1)-N(1)	2.010(2)	Cu(1)-O(1)	1.929(2)		
N(1)-Cu(1)-O(1)	90.28(9)	$N(1)-Cu(1)-O(1)^{c}$	89.72(9)		
5					
Cu(1)-N(1)	2.000(4)	Cu(1)-N(7)	2.002(4)		
Cu(1)-O(1)	2.40(3)				
N(1)-Cu(1)-N(7)	90.4(2)	$N(7)^{b}$ -Cu(1)-O(1)	83.6(7)		
N(7)-Cu(1)-O(1)	96.4(7)	N(1)-Cu(1)-O(1)	96.0(8)		
$N(1)-Cu(1)-O(1)^{b}$	84.0(8)				
6					
Cu(1)-N(1)	2.060(3)	Cu(1)-N(7)	2.016(3)		
Cu(1)-O(1)	2.425(2)				
N(1)-Cu(1)-N(7)	90.54(11)	$N(1)-Cu(1)-O(1)^{a}$	94.36(10)		

	r			
N(7)-Cu(1)-O(1)	93.37(10)	N(1)-Cu(1)-O(1)	85.64(10)	
$N(7)^{a}$ -Cu(1)-O(1)	86.63(10)			
		7		
Cu(1)-N(1)	2.001(3)	Cu(1)-O(1 <i>w</i>)	2.026(3)	
Cu(1)-O(1)	2.330(3)			
N(1)-Cu(1)-O(1)	88.33(13)	$N(1)-Cu(1)-O(1w)^d$	86.69(14)	
$N(1)-Cu(1)-O(1)^d$	91.67(13)	$O(1w)-Cu(1)-O(1)^d$	87.87(12)	
N(1)-Cu(1)-O(1w)	93.31(14)	O(1w)-Cu(1)-O(1)	92.13(12)	
8				
Cu(1)-O(1)	1.957(5)	Cu(1)-N(1)	2.002(6)	
Cu(1)-O(4)	1.979(5)	Cu(1)-N(7)	1.980(6)	
O(1)-Cu(1)-O(4)	87.1(2)	O(1)-Cu(1)-N(1)	164.1(2)	
O(1)-Cu(1)-N(7)	91.8(2)	O(4)-Cu(1)-N(1)	90.1(2)	
O(4)-Cu(1)-N(7)	172.56(2)	N(7)-Cu(1)-N(1)	92.9(2)	

Symmetry transformations used to generate equivalent atoms: ^{*a*)} -*x*, 1-*y*, -*z*; ^{*b*)} 1-*x*, -*y*, 1-*z*; ^{*c*)} 2-*x*, 1-*y*, -*z*; ^{*d*)} 1-*x*, -*y*, -*z*; ^{*e*)} 1-*x*, 1-*y*, -*z*; ^{*f*)} x+1, y+1, z;

 Table S2. Geometric parameters of hydrogen bonds [distances (Å) and angles(°)] for 2-4, 6-8.

D-H···A	<i>d</i> (H···A), Å	$d(D \cdots A), Å$	∠DHA, °	Symmetry
				operation for
				acceptor
		2		
$C(7)-H(7)\cdots O(1)$	2.37	3.234(7)	154.1	<i>x</i> , <i>y</i> , <i>z</i>
$C(14)-H(14)\cdots N(3)$	2.24	3.021(8)	141.6	<i>x</i> , <i>y</i> , <i>z</i>
C(13)-H(13)····N2	2.57	3.490(9)	170.2	<i>x</i> -1, <i>y</i> -1, <i>z</i>
		3		
O(1w)-H $(1w1)$ ····N $(2C)$	2.01(2)	2.84(2)	152(4)	<i>x</i> -1, <i>y</i> -1, <i>z</i>
O(2w)-H(1w2)····N(3C)	1.98	2.95(2)	162.6	<i>x</i> , <i>y</i> , <i>z</i>
O(2w)- $H(2w2)$ ···· $O(3A)$	2.01	2.89(2)	146.8	<i>x</i> , <i>y</i> -1, <i>z</i>
O(3w)-H(1w3)···O(8A)	2.06	2.94(3)	147.6	<i>x</i> , <i>y</i> , <i>z</i>
O(3w)-H(2w3)···O(1C)	2.01	2.95(5)	159.3	<i>x</i> , <i>y</i> +1, <i>z</i> -1
C(13A)-H(13B)····O(7A)	2.64	3.31(4)	128.0	<i>x</i> -1, <i>y</i> , <i>z</i>
$C(15A)-H(15A)\cdots O(2C)$	2.60	3.53(5)	165.2	<i>x</i> , <i>y</i> +1, <i>z</i> -1
C(17A)-H(17B)····O(4A)	2.53	3.40(5)	150.8	<i>x</i> +1, <i>y</i> , <i>z</i>
C(11C)-H $(11H)$ ····O $(3w)$	2.44	3.25(6)	142.0	<i>x</i> , <i>y</i> -1, <i>z</i> +1
$C(1A)-H(1A)\cdots O(7C)$	2.59	3.43(4)	150.7	<i>x</i> , <i>y</i> +1, <i>z</i> -1
$C(6A)-H(6A)\cdots N(2B)$	2.42	3.35(4)	172.9	<i>x</i> -1, <i>y</i> , <i>z</i> -1
$C(9A)-H(9A)\cdots O(1B)$	2.50	3.11(4)	122.7	<i>x</i> , <i>y</i> , <i>z</i>
$C(3B)-H(3B)\cdots O(4C)$	2.47	3.34(4)	156.2	<i>x</i> -1, <i>y</i> , <i>z</i>
$C(6B)-H(6B)\cdots N(2A)$	2.47	3.39(4)	172.0	<i>x</i> +1, <i>y</i> , <i>z</i> +1
C(9B)-H(9B)····O(6B)	2.19	2.90(4)	132.4	<i>x</i> , <i>y</i> , <i>z</i>
C(4C)-H(4C)···O(3w)	2.54	3.30(4)	140.2	<i>x</i> +1, <i>y</i> , <i>z</i> +1
$C(7C)-H(7C)\cdots O(6B)$	2.62	3.29(4)	129.4	<i>x</i> +1, <i>y</i> , <i>z</i>
C(9C)-H(9C)····O(6C)	2.43	2.97(3)	116.5	<i>x</i> , <i>y</i> , <i>z</i>
$C(9C)-H(9C)\cdots O(2w)$	2.48	3.28(2)	144.9	<i>x</i> , <i>y</i> , <i>z</i>
4				
$C(1)-H(1)\cdots O(2)$	2.42	3.259(4)	150.2	- <i>x</i> +1, - <i>y</i> +1, - <i>z</i>
$C(3)-H(3)\cdots O(2)$	2.45	3.281(4)	148.1	-x+1, -y+1, -z
$C(4)-H(4)\cdots N(2)$	2.66	3.424(4)	139.8	-x, -y, -z+1

C(7)-H(7)····O(1)	2.32	3.192(3)	156.3	- <i>x</i> +2, - <i>y</i> +1, - <i>z</i> +1	
		6			
$C(3)-H(3)\cdots N(8)$	2.45	3.315(5)	155.3	<i>-x</i> +1, <i>-y</i> +1, <i>-z</i> +1	
$C(6)-H(6)\cdots O(1)$	2.45	3.375(5)	173.3	<i>x</i> , - <i>y</i> +3/2, <i>z</i> +1/2	
C(10)-H(10)···O(2)	2.30	3.137(5)	149.2	<i>x</i> , <i>y</i> , <i>z</i>	
C(15)-H(15)···N(9)	2.54	3.415(5)	157.5	<i>x</i> , <i>y</i> , <i>z</i> +1	
C(16)-H(16)···O(2)	2.30	3.227(5)	172.2	<i>x</i> , <i>y</i> , <i>z</i> +1	
C(3)-H(3)···N(8)	2.45	3.315(5)	155.3	- <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1	
		7	•		
$O(2w)-H(2w2)\cdots N(2)$	2.11	2.906(5)	155.1	x+1/2, -y+1/2,	
				z+1/2	
O(2w)-H(1w2)····N(3)	2.01	2.837(5)	163.1	<i>x</i> , <i>y</i> , <i>z</i>	
O(1w)-H(1w1)····O(2w)	1.80(2)	2.667(4)	175(3)	<i>x</i> , <i>y</i> , <i>z</i> -1	
O(1w)-H(2w1)····N(8)	2.55	3.317(5)	146.2	<i>x</i> , <i>y</i> , <i>z</i>	
O(1w)-H(2w1)···O(2)	1.83	2.703(5)	173.5	<i>x</i> , <i>y</i> , <i>z</i>	
$C(1)-H(1)\cdots O(1)$	2.58	3.120(6)	117.7	- <i>x</i> +1, - <i>y</i> , - <i>z</i>	
$C(2)-H(2)\cdots O(1)$	2.48	3.285(5)	145.2	<i>x</i> -1, <i>y</i> , <i>z</i>	
$C(4)-H(4)\cdots N(4)$	2.51	3.036(6)	115.8	<i>x</i> , <i>y</i> , <i>z</i>	
$C(5)-H(5)\cdots O(1)$	2.58	3.079(5)	114.2	<i>x</i> , <i>y</i> , <i>z</i>	
C(7)-H(7)····O(3)	2.53	3.431(6)	164.0	<i>x</i> -1, <i>y</i> , <i>z</i>	
C(9)-H(9)····O(3)	2.40	3.285(6)	158.2	<i>x</i> -3/2, - <i>y</i> +1/2, <i>z</i> +1/2	
C(10)-H(10)····O(2)	2.53	3.324(6)	143.2	<i>x</i> -1, <i>y</i> , <i>z</i> +1	
C(13)-H(13)···N(4)	2.66	3.462(5)	144.5	- <i>x</i> +1, -y, -z+1	
8					
$C(1)-H(1)\cdots O(5)$	2.23	3.142(8)	166.4	<i>x</i> -1, <i>y</i> , <i>z</i>	
$C(2)-H(2)\cdots N(3)$	2.35	3.243(9)	159.6	-x, -y+1, -z	
$C(4)-H(4)\cdots O(5)$	2.62	3.494(10)	157.6	- <i>x</i> +1, - <i>y</i> +1, - <i>z</i>	
$C(5)-H(5)\cdots N(2)$	2.42	3.327(8)	164.6	- <i>x</i> +2, - <i>y</i> +2, - <i>z</i>	
$C(7)-H(7)\cdots O(6)$	2.20	3.119(9)	172.1	x+1, y+1, z	
C(11)-H(11)····O(6)	2.58	3.445(9)	154.8	x+1, y+1, z	
$C(14)-H(14)\cdots O(1)$	2.65	3.264(9)	124.3	- <i>x</i> +1, - <i>y</i> +2, - <i>z</i> +1	

Figure S1. Fragments of two H-bonded chains in 2 with indication of CH...N hydrogen bonds.

Figure S2. Fragment of supramolecular layer in 3.

Figure S3. Association of coordination chains in the H-bonded layer in 3.

Figure S4. Association of complexes 4 in H-bonded layer.

Figure S5. Association of mononuclear complexes in H-bonded chain in 5.

Figure S6. Association of mononuclear complexes in H-bonded chain in 6.

Figure S7. Walls of L_2 luminophores in **5** surrounded by acetonitrile solvent with indication of $Cg(L_2)...Cg(L_2)$ separations.

Figure S8. Complex 6. View of infinite stacking of L_2 luminophores (defined by N1 atom) along the *c* axis with the interplanar angle of 8.53 °, and the stacking dimers (L_2 - defined by N7 atom) completely locked by dmf molecules.

Figure S9. Representation of crystal structure **7**. View of three neighboring H-bonded double chains situated in T-shape mode and interconnected *via* bridging O2w water molecule in DDA mode.

Figure S10. Interplay of weak intermolecular interactions in 8.

(b)

Figure S11. Solid state emission spectra of (a) L_1 - L_4 luminophores ; (b) L_1 - L_4 luminophores and compounds 1-4, 6, 8.