Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Phase-dependant electrocatalytic activity of colloidally synthesized WP and α-WP₂ electrocatalysts for hydrogen evolution reaction

Siyabonga S. Nkabinde¹, Patrick V. Mwonga¹, Siyasanga Mpelane², Zakhele B. Ndala¹, Tshwarela Kolokoto¹, Ndivhuwo P. Shumbula¹, Obakeng Nchoe¹, Rapela R. Maphanga³, Kenneth I. Ozoemena¹, Kalenga P. Mubiayi^{1, 4} and Nosipho Moloto^{1*}

 ¹Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
²Department of Chemistry, Johannesburg University, Johannesburg, 2006, South Africa
³Next Generation Enterprises and Institutions, Council for Scientific and Industrial Research (CSIR), P. O. Box 395, Pretoria 0001, South Africa
⁴DSI/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa

*Corresponding author: Nosipho Moloto Email: Nosipho.Moloto@wits.ac.za Tel: +2711 7176774 Fax: +2711 7176749

Figure S1: X-ray diffraction pattern of as synthesized (a) WP and (b) α-WP₂.

Calculations of the interplanar spacing from the XRD results:

WP (011)

 $2\theta = 31.115$

- $\theta = 15.5575, \lambda = 0.15460 \text{ nm}$
- $\lambda = 2dSin\theta$
- $d = 0.15406 \text{ nm}/2\text{Sin}\theta = 0.2871 \text{ nm}$

A-WP₂ (-201)

- $2\theta = 20.971$
- $\theta = 10.4855, \lambda = 0.15460 \text{ nm}$
- $\lambda = 2dSin\theta$
- $d = 0.15406 \text{ nm}/2\text{Sin}\theta = 0.4231 \text{ nm}$

6

8

0 2 4 Full Scale 61 cts Cursor: 0.000

Element	Atomic %
0	76.82
Р	12.39
W	10.79

Element	Atomic %
0	70.86
Р	17.36
W	11.78

Figure S2: EDX spectra and corresponding atomic % of (a) WP and (b) α -WP₂.

10

keV

Figure S3: The C 1s spectrum of (a) WP and (b) α-WP₂.

Figure S4: XRD pattern of long term stored α -WP₂.

Table S1: : Comparison	of the electrocataly	tic activity of WP	$^{\circ}$ and α -WP ₂ catalysts
1	•	•	

Catalyst	Tafel Slope	Overpotential	Exchange	Onset potential
	(mV dec ⁻¹)	(10 mA cm ⁻²)	current density	(mV)
			(mA cm ⁻²)	
WP	95.71	314	0.004239	145
α-WP ₂	86.83	271	0.004536	106

Catalyst	T(K)	β (mV/dec)	J ₀ (mAcm ⁻²)	E _a (kJ/mol)
WP	298	95.71	0.004239	44.24
	308	92.58	0.006973	
	318	87.34	0.0.01136	
	328	84.59	0.01316	
a-WP ₂	298	86.83	0.004536	31.79
	308	84.86	0.009468	
	318	82.72	0.01023	
	328	80.25	0.02410	

Table S2: Kinetic parameters of WP and α -WP₂ catalysts

Figure S5: Cyclic Voltammetry (CV) curves of (a) WP and (b) α -WP₂ catalysts measured in a potential window without faradaic processes in 0.5 M H₂SO₄ at scan rate from 20 - 100 mV s⁻¹.

Figure S6: Equivalent circuit for one time constant, where R_s - solution resistant; CPE - constant phase element; R_{ct} - charge transfer resistance.

Figure S7: Tafel slopes of (a) WP and (b) α -WP₂ catalysts obtained at different temperatures.

Figure S8: Calculated hydrogen adsorption energies on (011) and (-201) surfaces for WP and α -WP₂, respectively.

No. of Layers	Adsorption Energy (eV)	Adsorption Energy (eV)	
	(WP)	(α -WP ₂)	
1	-0.729952595	-0.690267678	
2	-0.74541264	-0.717309001	
3	-0.778989849	-0.720332384	
4	-0.788683415	-0.720761754	

Table S3: Calculated adsorption energy using various layer planes of WP and ∝-WP₂.

Figure S9: Calculated hydrogen adsorption energies for WP and α-WP₂ using 1-layer.

Figure S10: Calculated hydrogen adsorption energies for WP and α-WP₂ using 2-layers.

Figure S11: Calculated hydrogen adsorption energies for WP and α-WP₂ using 3-layers.

Figure S12: Calculated hydrogen adsorption energies for WP and α -WP₂ using 4-layers.

Figure S13: Band structures and DOS plots calculated using (a) 1, (b) 2, (c) 3 and (d) 4 layer planes of the WP (011) surface.

Figure S14: Band structures and DOS plots calculated using (a) 1, (b) 2, (c) 3 and (d) 4 layer planes of the α -WP₂ (-201) surface.

References

- D. Naveh, E. Towe, Tunable band gaps in bilayer transition-metal dichalcogenides, Physical Review 84 (2011) 205325.
- S. Ahmad, S. Mukherjee, A comparative study of electronic properties of bulk MoS₂ and its monolayer using DFT technique: Application of mechanical strain on MoS₂ monolayer, Graphene 3 (2014) 52-59.