Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting information

CARBAZOLE-FUNCTIONALIZED COBALT(II) PORPHYRIN AXIALLY BONDED WITH C₆₀/C₇₀ DERIVATIVES: SYNTHESIS, AND CHARACTERIZATION

E.N. Ovchenkova^{1*}, N.G. Bichan¹, M.S. Gruzdev¹, A.A. Ksenofontov¹, F.E. Gostev², I.V. Shelaev², V.A.

Nadtochenko², T.N. Lomova¹

¹G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Akademicheskaya str., 1; Ivanovo, Russia

²N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st.,

4, Moscow, Russia

Synthesis of 1-N-methyl-2-(pyridin-4-yl)-3,4-fullero[60]pyrrolidine, PyC ₆₀
Figure S1. PyC ₆₀ MALDI TOF mass spectrum.
Synthesis of 2,5-di-(pyridin-2-yl)-3,4-fullero[70]pyrrolidine, Py ₂ C ₇₀
Figure S2. Py ₂ C ₇₀ MALDI TOF mass spectrum
Table S1. UV-vis spectra of several meso-substituted porphyrins and cobalt porphyrins4
Table S2. The chemical shifts of H_{β} and H_{o} in cobalt(II) porphyrins and their supramolecular systems with pyrrolidino[60]/[70]fullerenes
Figure S3. The transformation of the UV-vis spectrum of the CoDTBCP -5.49×10^{-5} M PyC ₆₀ mixture in toluene at 298 K during 1000 seconds
Figure S4. The plots of $\log((A_0 - A_{\infty})/(A_{\tau} - A_{\infty}) vs \tau$ for the reaction of CoDTBCP with PyC ₆₀ in toluene at 298 K5 Figure S5. The plot of $\log k_{obs} vs \log C_{PyC_{60}}$ for the reaction of CoDTBCP with PyC ₆₀ in toluene at 298 K5
Figure S6. The plots of $\log((A_0 - A_\infty)/(A_\tau - A_\infty) vs \tau$ for the reaction of CoDTBCP with Py ₂ C ₇₀ in toluene at 298 K6 Figure S7. The plot of $\log k_{obs} vs \log C_{Py_2C_{70}}$ for the reaction of CoDTBCP with Py ₂ C ₇₀ in toluene at 298 K
vibrations of Py ₂ C ₇₀ are denoted with asterisks. Figure S9. The ¹ H NMR spectrum of CoDTBCP (<i>a</i>), its triad, (PyC ₆₀) ₂ CoDTBCP (<i>b</i>), and its dyad,
$(Py_2C_{70})CoDTBCP (c) in CDCl_3.$ Figure S10. The optimized structures of $(PyC_{60})_2CoDTBCP (a)$ and $(Py_2C_{70})CoDTBCP (b)$.
Table S3. The structural parameters (bond lengths, angles, and bonding energy (E_b)) of $(PyC_{60})_2$ CoDTBCP and (Py_2C_{70}) CoDTBCP.8
Figure S11. Femtosecond transient absorption spectrum of CoDTBCP in toluene at the excitation wavelength of 400 nm (Insert: the time profile of transient peaks of CoDTBCP)

Synthesis of 1-N-methyl-2-(pyridin-4-yl)-3,4-fullero[60]pyrrolidine, PyC₆₀.

PyC₆₀ was prepared according to a general procedure of fulleropyrrolidine synthesis developed by Prato and coworkers [Prato M., Maggini M., Giacometti C., et al. // Tetrahedron. 1996. V.52. №. 14. P. 5221. https://doi.org/10.1016/0040-4020(96)00126-3]. The changes in the procedure (the ratio of reagents, the reaction time, and the purification method) were done, which led to the increase in the yield of the product (Supplementary Information). UV-vis (toluene): λ_{max} (logε) = 312, 328, 433 (3.56) nm. IR (KBr) v 404, 431, 448, 479, 504, 527, 553, 574, 598, 635, 664, 707, 737, 767, 785, 824, 840, 910, 940, 989, 1034, 1067, 1083, 1109,1123, 1179, 1215, 1246, 1268, 1314, 1334, 1409, 1430, 1463, 1561, 1595, 1736, 2783, 2845, 2920, 2948 cm⁻¹. ¹H NMR (CDCl₃): δ 8.71 (d, J 5.49 Hz, 2H, CH_{Py}), 7.82 (m, 2H, CH_{Py}), 5.02 (d, J 9.77 Hz, 1H, CH₂), 4.96 (s, 1H, CH₂), 4.31 (d, *J* 9.77 Hz, 1H, CH-N), 2.83 (s, 3H, CH_{Py}). MS (MALDI-TOF), m/z (rel. int.): 852.87 (100) [M]⁺, 853.88 (77) [M–H]⁺, 719.83 (53) [C₆₀]⁺ (Fig. S1).

Figure S1. PyC₆₀ MALDI TOF mass spectrum.

Although PyC₆₀ is expected to give one signal in MALDI TOF mass-spectrum with m/z corresponding to the formula $C_{68}H_{10}N_2$ (calc. m/z 854.0) it gives the signal with m/z 719.83, corresponding to the $[C_{60}]^+$. It is expected that this signal are formed under the conditions of mass spectrum registration.

Synthesis of 2,5-di-(pyridin-2-yl)-3,4-fullero[70]pyrrolidine, Py₂C₇₀

Pyridine-2-carboxyaldehyde (15 mg, 0.14 mmol) and 2-picolylamine (15 mg, 0.14 mmol) dissolved in dichlorobenzene (3 ml) were added to the dichlorobenzene solution of C₇₀ (100 mg, 0.12 mmol). The reaction mixture was heated at 180° C for 15 min. Then the solvent was removed by vacuum distillation. The residue was dissolved with toluene and adsorbed on silica gel: the first zone is unreacted C₇₀ (toluene as an eluent), and the second zone is Py₂C₇₀ (toluene:methanol (20:1) as an eluent). The yield: 45 mg (45 %). UV-vis, toluene (λ_{max} , nm (log ϵ)): 398 (4.91), 464 (4.23). IR (KBr) v, cm⁻¹: 402, 437, 464, 534, 555, 569, 580, 622, 636, 641, 672, 690, 726, 746, 755, 770, 777, 794, 823, 833, 865, 910, 925, 996, 1047, 1089, 1127, 1147, 1219, 1256, 1293, 1321, 1376, 1412, 1427, 1441, 1472, 1493, 1513, 1571, 1590, 1753, 2850, 2920, 3008, 3050. ¹H NMR (CDCl₃): δ , ppm: 9.17 (d, J 5.40 Hz, 1H), 8.94 (d, J 5.20 Hz 1H), 8.77 (m, 1H), 8.36 (m, 1H), 8.16 (m, 1H), 7.95 (t, J 7.73 Hz, 1H,), 7.71 (m, 1H), 7.55 (m, 1H), 6.37 (s, 1H), 6.20 (s, 1H), 5.17 (s, 1H). MALDI-TOF MS, m/z: 1040.29 [M]⁺.

Compound	Solvent	Soret band λ ,	Q bands λ , nm				ref
		nm					
H ₂ TPP	toluene	419	514	548	592	648	[1]
H ₂ TIPP	CHCl ₃	419	517	550	590	647	[2]
H ₂ TBPP	CHCl ₃	421	518	554	590	649	[3]
5	toluene	423	517	551	593	649	this work
CoTPP	toluene	413	529	-	-	-	[4]
CoTIPP	toluene	415	531	615	-	-	[5]
CoTBPP	toluene	415	530	613	-	-	[3]
CoDTBCP	toluene	419	532	-	-	-	this work

Table S1. UV-vis spectra of several meso-substituted porphyrins and cobalt porphyrins.

TPP - 5,10,15,20-tetraphenylporphin

TIPP - 5,10,15,20-(tetra-4-isopropylphenyl)porphin

TBPP - 5,10,15,20-(tetra-4-tert-butylphenyl)porphin

[1] B. Ventura, L. Flamigni, G. Marconi, F. Lodato, D.L. Officer // New J. Chem. 2008, 32, 166-178.

[2] H. Dehghani, R. Sahba, M. Afrooz, H.Mollaei // J. Chinese Chem. Soc. 2010, 57, 690-695.

[3] N.G. Bichan, E.N. Ovchenkova, M.S. Gruzdev, T.N. Lomova // J. Struct. Chem. 2018, 59, 711-719.

[4] N.G. Bichan, E.N. Ovchenkova, V.A. Mozgova, N.O. Kudryakova, T.N. Lomova // Rus. J. Inorg. Chem. 2019, 64, 605–614.

[5] N.G. Bichan, E.N. Ovchenkova, V.A. Mozgova, N.O. Kudryakova, M. S. Gruzdev, T.N. Lomova // Rus. J. Phys. Chem. A. 2020, 94, 1159–1166.

Table S2. The chemical shifts of H_β and H_o in <code>cobalt(II)</code> porphyrins and their
supramolecular systems with pyrrolidino[60]/[70]fullerenes.

Complex	H _β , ppm	H _o , ppm	ref
CoTPP	15.94 br.s.	13.16 br.s.	[1]
(PyC ₆₀) ₂ CoTPP*	13.50 br.s.	9.88 br.s.	[1]
CoTIPP	16.06 br.s.	13.21 br.s.	[2]
(PyC ₆₀) ₂ CoTIPP	14.31 br.s.	10.97 br.s.	[2]
CoTBPP	16.05 br.s.	13.24 br.s.	[3]
(PyC ₆₀) ₂ CoTBPP	14.62 br.s.	11.40 br.s.	[3]
CoDTBCP	16.29 br.s., 15.05 br.s.	12.11 br.s.	this work
(PyC ₆₀) ₂ CoDTBCP	14.42 m	10.09 br.s.	this work
(Py ₂ C ₇₀)CoDTBCP	16.01 br.s., 14.89 br.s.	12.08 br.s.	this work

[1] N.G. Bichan, E.N. Ovchenkova, V.A. Mozgova, N.O. Kudryakova, T.N. Lomova // Rus. J. Inorg. Chem. 2019, 64, 605–614.

[2] N.G. Bichan, E.N. Ovchenkova, V.A. Mozgova, N.O. Kudryakova, M. S. Gruzdev, T.N. Lomova // Rus. J. Phys. Chem. A. 2020, 94, 1159–1166.

[3] N.G. Bichan, E.N. Ovchenkova, M.S. Gruzdev, T.N. Lomova // J. Struct. Chem. 2018, 59, 711-719.

Figure S3. The transformation of the UV-vis spectrum of the CoDTBCP – 5.49×10^{-5} M PyC₆₀ mixture in toluene at 298 K during 1000 seconds.

Figure S4. The plots of $\log((A_0 - A_\infty)/(A_\tau - A_\infty) vs \tau$ for the reaction of CoDTBCP with PyC₆₀ in toluene at 298 K.

Figure S5. The plot of $\log k_{obs} vs \log C_{PyC_{60}}$ for the reaction of CoDTBCP with PyC₆₀ in toluene at 298 K.

Figure S8. The IR spectra of CoDTBCP (black) and its triad with Py_2C_{70} (green) in KBr. Bands corresponding to vibrations of Py_2C_{70} are denoted with asterisks.

Figure S9. The ¹H NMR spectrum of CoDTBCP (*a*), its triad, (PyC₆₀)₂CoDTBCP (*b*), and its dyad, (Py₂C₇₀)CoDTBCP (*c*) in CDCl₃.

Figure S10. The optimized structures of (PyC₆₀)₂CoDTBCP (*a*) and (Py₂C₇₀)CoDTBCP (*b*).

Table S3. The structural parameters (bond lengths, angles, and bonding energy (E_b)) of $(PyC_{60})_2CoDTBCP$ and $(Py_2C_{70})CoDTBCP$.

$\mathbf{C}_{\mathbf{a}}$ $\mathbf{N}(\mathbf{c})$	2 400	$N(2) \subset N(4)$	174 72				
CO-N(0)	2.409	N(2) - C0 - N(4)	1/4./2				
		$\frac{N(1)-CO-N(5)}{N(2)}$	86.11				
		N(2)-Co-N(5)	81.37				
		N(3)-Co-N(5)	83.65				
		N(4)– Co – $N(5)$	93.84				
		N(1)-Co-N(5)	91.51				
		N(2)-Co-N(5)	91.71				
		N(3)-Co-N(5)	98.90				
		N(4)-Co-N(5)	92.99				
$\begin{cases} N(5) \\ N(1) \\ (2)N \\ (4) \\ N \\ (2)N \\ (2)N \\ (2)N \\ (2)N \\ (2)N \\ (2)N \\ (3) \\ (3) \\ (4) \\ (3) \\ (4) \\ (3) \\ (3) \\ (3) \\ (4) \\ (3) \\ ($							
	Bond length, Å		Angle, ^o	E_b , kJ·mol ^{-1a}			
Co-N(1)	2.055	N(1)-Co-N(2)	86.13				
Co–N(2)	2.055	N(2)-Co-N(3)	87.39				
$\overline{\text{Co-N(3)}}$	2.024	N(3)-Co-N(4)	88.32				
Co-N(4)	Co-N(4) 2.037 $N(4)-Co-N(1)$ 87.50						
Co-N(5)	2.315	N(1)-Co-N(3)	161.34	117			
		N(2)-Co-N(4)	146.56	11/			
		N(1)-Co-N(5)	90.36				
		N(2)-Co-N(5)	107.99				
		N(3)-Co-N(5)	108.29				
		N(4)-Co-N(5)	104.84				
0.0001 1			0.11	/_			

^aThe bonding energy (E_b) was calculated as follows: $E_b = |E_{triad/dyad} - (E_{CoDTBC} + E_{PyC_{60}/Py_2C_{70}})|$.

Figure S11. Femtosecond transient absorption spectrum of CoDTBCP in toluene at the excitation wavelength of 400 nm (Insert: the time profile of transient peaks of CoDTBCP).

