Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting information

Protic ionic liquids tailored by different cationic structures for the efficient chemical fixation of diluted and waste CO₂ into cyclic carbonates

Wei Hui^a, Xiang Wang^a, Xiao-Ning Li^a, Hai-Jun Wang^{a*}, Xue-Mei He^{b*} Xin-Yi Xu^c

^aThe Key Laboratory of Food Colloids and Biotechnology, Ministry of Education,

School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122,

China

^bDepartment of Chemistry, School of Science, Jiangxi Agricultural University, Nanchang 330045, China

^cSchool of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China

*Corresponding author: E-mail: wanghj@jiangnan.edu.cn; hexuemei@iccas.ac.cn

[DBUH]Br: ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 9.58 (s, 1H), 3.76-3.74 (d, 2H), 3.58-3.41 (m, 6H), 2.68-2.63 (d, 2H), 2.33-2.29 (m, 2H), 1.94-1.81 (d, 6H). ¹³C NMR (101 MHz, CDCl₃): δ_C (ppm), 165.44, 53.53, 47.92, 39.64, 37.46, 31.57, 28.20, 25.84, 23.23, 18.84.

[AIDBU]Br: ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 5.86-5.76 (m, 1H), 5.29-5.19 (m, 2H), 4.22-4.20 (d, 2H), 3.75-3.60 (m, 6H), 2.86-2.83 (d, 2H), 2.18-2.13 (m, 2H) 1.77 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ_C (ppm), 167.33, 130.53, 118.23, 56.06, 55.87, 49.60, 47.35, 29.23, 28.59, 26.15, 22.99, 20.34.

[DBUH]CI: ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 10.45 (s, 1H), 3.92-3.90 (d, 2H), 3.81-3.69 (m, 6H), 2.82-2.77 (d, 2H), 2.47-2.44 (m, 2H), 1.83-1.72 (d, 6H). ¹³C NMR (101 MHz, CDCl₃): δ_C (ppm), 165.58, 53.50, 47.93, 39.54, 37.85, 31.71, 28.53, 25.82, 23.47, 18.86.

[**MimH]Br:** ¹H NMR (400 MHz, DMSO-d₆): δ_H (ppm) 8.74 (s, 1H), 7.51 (s, 2H), 3.99 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆): δ_C (ppm) 135.87, 123.91, 119.71, 39.59, 35.58.

[TMGH]Br: ¹H NMR (400 MHz, D₂O): δ_H (ppm) 3.13 (s, 12H). ¹³C NMR (101 MHz, D₂O): δ_C (ppm) 161.40, 39.10.

[AITMG]Br: ¹H NMR (400 MHz, CDCl₃): 6.08-5.77 (m, 1H), 5.36-5.13 (m, 2H), 3.94-3.81 (m, 2H), 3.08 (d, 4H), 2.87 (s, 8H). ¹³C NMR (101 MHz, CDCl₃): δ_C (ppm), 162.90, 161.79, 138.17, 135.89, 133.57, 129.22, 127.01, 115.07, 53.32, 41.20, 40.52, 40.28.

[4-VBTMG]Cl: ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.46 (d, 2H), 7.23 (d, 2H),

6.76-6.69 (q, 1H), 5.79 (d, 1H), 5.32 (d, 2H), 4.35 (d, 1H), 3.96 (d, 1H), 3.23 (s, 2H), 3.13 (s, 2H) 3.06 (s, 8H). ¹³C NMR (101 MHz, CDCl₃): δ_{C} (ppm), 162.90, 161.79, 138.17, 135.89, 133.52, 129.22, 127.01, 115.07, 53.32, 41.20, 40.52, 40.28.

[DABCOH]Br: ¹H NMR (400 MHz, DMSO-d₆): δ_H (ppm) 3.07 (s, 12H). ¹³C NMR (101 MHz, DMSO-d₆): δ_C (ppm) 44.10, 39.43.

Figure S1. The ¹H NMR spectrum of [DBUH]Br.

Figure S2. The ¹³C NMR spectrum of [DBUH]Br.

Figure S3. The ¹H NMR spectrum of [AlDBU]Br.

Figure S4. The ¹³C NMR spectrum of [AlDBU]Br.

Figure S5. The ¹H NMR spectrum of [DBUH]Cl.

Figure S6. The ¹³C NMR spectrum of [DBUH]Cl.

Figure S7. The ¹H NMR spectrum of [MimH]Br.

Figure S8. The ¹³C NMR spectrum of [[MimH]Br.

Figure S9. The ¹H NMR spectrum of [TMGH]Br.

Figure S10. The ¹³C NMR spectrum of [[TMGH]Br.

Figure S11. The ¹H NMR spectrum of [AITMG]Br.

Figure S12. The ¹³C NMR spectrum of [AITMG]Br.

Figure S13. The ¹H NMR spectrum of [VBTMG]Cl.

Figure S14. The ¹³C NMR spectrum of [VBTMG]Cl.

Figure S15. The ¹H NMR spectrum of [DABCOH]Br.

Figure S16. The ¹³C NMR spectrum of [DABCOH]Br.

Computation details

To understand the structures and interactions of CO₂ and SO with the ILs ([DBUH]Cl, [DBUH]Br, [TMGH]Br, [DABCOH]Br, [MimH]Br, [VBTGM]Cl, [AlTGM]Br, [AlDBU]Br and tetrabutylammonium bromide TBAB) used in the present work, geometric optimizations were carried out for free CO₂, SO, all the ionic liquids and their corresponding complexes. Frequency calculations of these systems were carried out at the same theoretical level of M06/6-311+G(2d, 2p) [S1]. The binding energy of different ionic liquid-CO₂ complexes and ionic liquid-SO complexes were evaluated by the enthalpy change, $\Delta H = H_{gas,298.15 \text{ K}}$ (CO₂ or SO). All calculations were carried out using Gaussian [S2].

Figure S17. (a) [DBUH]Br-CO₂, (b) [AlDBU]Br-CO₂, (c) [DBUH]Cl-CO₂, (d) [MimH]Br-CO₂, (e) [TMGH]Br-CO₂, (f) [AlTMG]Br-CO₂, (g) [VBTMG]Cl-CO₂, (h) [AlTMA]Br-CO₂, (i) [DABCO]Br-CO₂, and (j) TBAB-CO₂. ΔH of interaction are also shown. C gray, O red, N blue, Br vermilion, Cl green.

Figure S18. TGA curves of [AlTMG]Br.

Entry	Temperature (°C)	Time (h)	Yield of SC (%)	Selectivity of SC (%)
1	80	24	7	99
2	90	24	18	99
3	100	24	31	99
4	110	24	45	99
5	120	24	53	99
6	130	24	55	99
7	100	32	58	99
8	100	40	82	99
9	100	48	99	99

Table S1. The optimization of reaction parameters for the cycloaddition of diluted CO2

 with SO using the [AlTMG]Br catalyst.^a

^aReaction conditions: SO (1.2 g, 10 mmol), CO₂ (1 bar, 15% CO₂/85% N₂), catalyst (1.5 mol%).

Entry	Catalyst	Additive	Reaction conditions	Yield (%)	Ref.
1	[CBDMAPy]Br	-	20 bar, 130 °C, 1 h	85	[S3]
2	BnBimBr	DEA	1 bar, 80 °C, 3 h	94	[S4]
3	DBPIL	-	1 bar, 80 °C, 6 h	87	[S5]
4	[C ₁ C ₄ Im][HCO ₃]	SH4-Al(Cl)	10 bar, 25 °C, 24 h	88	[S6]
5	NEt(HE) ₃ Br	-	15 bar, 130 °C, 2 h	97	[S7]
6	[DMAPH]Br	-	1 bar, 120 °C, 9 h	96	[S8]
7	BMImBr	ZnCl ₂	15 bar, 100 °C, 1 h	86	[S9]
8	Bu ₄ NBr	-	30 bar, 100 °C, 2 h	56	[S10]
9	ZnBr ₂	DMF	30 bar, 150 °C, 4 h	67	[S11]
	[AlTMG]Br	-	1 bar, 100 °C, 8 h	99	
8	[AlTMG]Br	-	1 bar, 25 °C, 72 h	93	This work
	[AlTMG]Br	-	0.15 bar, 100 °C, 48 h	99	

Table S2. Catalytic activity of various catalysts for cycloaddition of CO_2 with SO.

REFERENCES

- [S1] Y. Zhao, D.G. Theor. Chem. Acc. 119 (2008) 525-525.
- [S2] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
- Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M.
- Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L Sonnenberg,
- M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
- Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro,
- M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J.
- Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M.
- Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo,
- J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.
- Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
- P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman,
- J. V. Ortiz, J. Cioslowski, D. J. Fox, eds., Gaussian 09, revision a.02, Gaussian, Inc., Pittsburgh PA, 2009.
- [S3] X. Meng, H. He, Y. Nie, X. Zhang, S. Zhang, J. Wang, ACS Sustain. Chem. Eng., 2017, 5, 3081–3086.
- [S4] L. Ji, Z. Luo, Y. Zhang, R. Wang, Y. Ji, F. Xia, G. Gao, *Molecular Catalysis*, 2018, 446, 124-130.
- [S5] X. Meng, Z. Ju, S. Zhang, X. Liang, N. von Solms, X. Zhang, X. Zhang, Green Chem., 2019, 21, 3456-3463.
- [S6] J. Liu, G. Yang, Y. Liu, D. Zhang, X. Hu, Z. Zhang, Green Chem., 2020, 22,

4509-4515.

- [S7] W. Cheng, B. Xiao, J. Sun, K. Dong, P. Zhang, S. Zhang, F. T. T. Ng, *Tetrahedron Lett.*, 2015, 56, 1416-1419.
- [S8] Z. Zhang, F. Fan, H. Xing, Q. Yang, Z. Bao, Q. Ren, ACS Sustain. Chem. Eng., 2017, 5, 2841-2846.
- [S9] J. Sun, W. Cheng, W. Fan, Y. Wang, Z. Meng, S. Zhang, *Catal. Today*, 2009, 148, 361-367.
- [S10] J.-Q. Wang, K. Dong, W.-G. Cheng, J. Sun, S.-J. Zhang, Catal. Sci. Technol., 2012, 2, 1480-1484.
- [S11] S. Zhong, L. Liang, B. Liu, J. Sun, J. CO2 Util., 2014, 6, 75-79.