Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supporting Information for:

The Hydroboration of α -diimines

Stephen J. Geier,^a Justin F. Binder,^b Lara K. Watanabe,^b Christopher M. Vogels,^a Charles L.B. Macdonald,^{bc} Stephen A. Westcott^{*a}

^aDepartment of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada. ^bDepartment of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada. ^cDepartment of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada

Table of Contents

Experimental Section	2
General Procedure for bis-Hydroboration Products 1-3	2
General Procedure for the Synthesis of 4-7	9
X-Ray Crystallography	18

Experimental Section. Reagents and solvents used were obtained from Aldrich Chemicals. α -Diimines were prepared by condensation of aniline derivatives with glyoxal or 2,3-butanedione. NMR spectra were recorded on a JEOL JNM-GSX400 FT NMR (¹H: 400 MHz; ¹¹B: 128 MHz; ¹³C: 100 MHz) spectrometer. Chemical shifts (δ) are reported in ppm [relative to residual solvent peaks (¹H and ¹³C) or external BF₃·OEt₂ (¹¹B)]. Multiplicities are reported as singlet (s), doublet (d), triplet (t), multiplet (m). Melting points were measured uncorrected with a Stuart SMP30 apparatus. Elemental analyses for C, H, and N were carried out at the University of Windsor. All reactions were carried out under an atmosphere of dinitrogen.

General Procedure for bis-Hydroboration Products 1-3. Catecholborane (50 mg, 0.42 mmol, 2.1 eq) was added to diimine (0.20 mmol) in toluene. Following 4 hours of stirring, the solvent was removed in vacuo and the residue washed with hexanes (3 x 5 mL).

 N^1 , N^2 -Bis(benzo[d][1,3,2]dioxaborol-2-yl)- N^1 , N^2 -bis(4-methoxyphenyl)ethane-1,2-diamine (1)

*Note: The ¹¹B NMR spectrum of the crude reaction mixture shows a resonance at 21.1 ppm in addition to the signal corresponding to **1**, suggesting that BO_3 environment(s) are also present in solution, possibly B₂cat₃ ((cat)B(cat)B(cat)) or (diamino)B(cat)B(cat).

Yield: 60 mg (59%, 0.12 mmol). M.P. = 180° C (decomp). Anal. calc. for $C_{28}H_{26}N_2B_2O_6$ (508.14 g/mol) (%): C 66.18, H 5.16, N 5.51. Found: C 66.35, H 5.04, N 5.28. ¹H NMR (400 MHz, CDCl₃) δ : 3.78 (s, 4H), 3.79 (s, 6H), 6.82 (d, J = 9.2 Hz, 4H), 6.91-7.01 (m, 8H, cat), 7.05 (d, J = 8.7 Hz, 4H). ¹¹B NMR (128 MHz, CDCl₃) δ : 24.5 (br). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 48.6, 55.5, 111.7, 114.3, 121.9, 125.6, 137.1, 148.7, 156.5.

Figure S1. ¹H NMR of N^1 , N^2 -bis(benzo[*d*][1,3,2]dioxaborol-2-yl)- N^1 , N^2 -bis(4-methoxyphenyl)ethane-1,2-diamine (**1**) in CDCl₃.

Figure S2. ¹³C NMR of N^1, N^2 -bis(benzo[*d*][1,3,2]dioxaborol-2-yl)- N^1, N^2 -bis(4-methoxyphenyl)ethane-1,2-diamine (**1**) in CDCl₃.

 N^1 , N^2 -Bis(benzo[d][1,3,2]dioxaborol-2-yl)- N^1 , N^2 -bis(2,6-dimethylphenyl)ethane-1,2-diamine (2)

Yield: 80 mg (79%, 0.16 mmol). M.P. = 147-149 (decomp). Anal. calc. Anal. calc. for $C_{30}H_{30}N_2B_2O_4 \cdot 1/4$ CH₂Cl₂ (525.43 g/mol) (%): C 69.15, H 5.85, N 5.33. Found: C 69.72, H 5.57, N 5.00. ¹H NMR (400 MHz, CDCl₃) δ : 2.23 (s, 12H), 3.62 (s, 4H), 6.95 (br s, 4H, cat), 6.98 (br s, 4H, cat), 7.11 (s, 4H), 7.20 (br, 1H), 7.35 (br, 1H). ¹¹B NMR (128 MHz, CDCl₃) δ : 22.5 (br). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 18.8, 49.1, 111.7, 121.8, 126.7, 128.9, 136.1, 141.2, 149.0.

Figure S3. ¹H NMR of N^1, N^2 -bis(benzo[*d*][1,3,2]dioxaborol-2-yl)- N^1, N^2 -bis(2,6-dimethylphenyl)ethane-1,2-diamine (**2**) in CDCl₃.

Figure S4. ¹³C NMR of N^1 , N^2 -bis(benzo[*d*][1,3,2]dioxaborol-2-yl)- N^1 , N^2 -bis(2,6-dimethylphenyl)ethane-1,2-diamine (**2**) in CDCl₃.

 N^1 , N^2 -Bis(benzo[d][1,3,2]dioxaborol-2-yl)- N^1 , N^2 -bis(2,6-diisopropylphenyl)ethane-1,2-diamine (3)

Yield: 104 mg (84%, 0.169 mmol). M.P. = 170° C (decomp). Anal. calc. for C₃₈H₄₆N₂B₂O₄ (616.42 g/mol) (%): C 74.04, H 7.52, N 4.54. Found: C 73.98, H 7.53, N 4.52. ¹H NMR (400 MHz, CDCl₃) δ : 1.10 (d, J = 6.9 Hz, 12H), 1.19 (d, J = 6.9 Hz, 12H), 3.19 (sept, J = 6.9 Hz, 4H), 3.64 (s, 4H), 6.93 (br s, 6H, cat), 7.17 (d, J = 7.8 Hz, 4H, *m*-C*H*), 7.28 (t, J = 7.8 Hz, 2H, *p*-C*H*). ¹¹B NMR (128 MHz, CDCl₃) δ : 24.6 (br). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 23.8, 25.0, 28.2, 50.3, 111.7, 121.8, 124.3, 127.6, 137.8, 146.7, 148.9.

Figure S5. ¹H NMR of N^1 , N^2 -bis(benzo[*d*][1,3,2]dioxaborol-2-yl)- N^1 , N^2 -bis(2,6-diisopropylphenyl)ethane-1,2-diamine (**3**) in CDCl₃.

Figure S6. ¹³C NMR of N^1 , N^2 -bis(benzo[*d*][1,3,2]dioxaborol-2-yl)- N^1 , N^2 -bis(2,6-diisopropylphenyl)ethane-1,2-diamine (**3**) in CDCl₃.

General Procedure for the Synthesis of 4-7. To 100 mg of diimine (0.34-0.42 mmol) in 10 mL of diethyl ether was added 1-1 mg catecholborane (0.37-0.47 mmol, 1.1 equivalents). Following 4 hours of stirring the mixture was filtered and the precipitate was washed with diethyl ether (3x5 mL) and dried *in vacuo*.

4',5'-Dimethyl-1',3'-diphenyl-1',5'-dihydrospiro[benzo[*d*][1,3,2]dioxaborole-2,2'-[1,3,2]diazaborol]-3'ium-9-uide (**4**)

Yield: 86 mg (57%, 0.24 mmol). M.P. = 128°C (decomp). Anal. calc. for $C_{22}H_{21}N_2BO_2 \bullet 1/4$ Et₂O (374.76 g/mol) (%): C 73.71, H 6.32, N 7.48. Found: C 73.42, H 6.27, N 7.46. ¹H NMR (400 MHz, CDCl₃) δ : 1.66 (d, J = 6.9 Hz, 3H), 2.23 (s, 3H), 4.83 (q, J = 6.9 Hz, 1H), 6.53-6.60 (ov m, 5H), 6.63-6.69 (m 2H), 7.10 (t, J = 8.2 Hz, 2H), 7.19 (d, J = 7.8 Hz, 2H), 7.27-7.33 (ov m, 3H). ¹¹B NMR (128 MHz, CDCl₃) δ : 11.5 (br). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 16.0, 17.3, 59.6, 109.3, 109.5, 114.9, 117.1, 119.0, 124.0, 129.1, 129.2, 129.5, 137.2, 144.9, 151.2, 151.7, 187.0.

Figure S7. ¹H NMR of 4',5'-dimethyl-1',3'-diphenyl-1',5'-dihydrospiro[benzo[*d*][1,3,2]dioxaborole-2,2'-[1,3,2]diazaborol]-3'-ium-9-uide (**4**) in CDCl₃.

Figure S8. ¹³C NMR of 4',5'-dimethyl-1',3'-diphenyl-1',5'-dihydrospiro[benzo[*d*][1,3,2]dioxaborole-2,2'-[1,3,2]diazaborol]-3'-ium-9-uide (**4**) in CDCl₃.

4',5'-Dimethyl-1',3'-di-*p*-tolyl-1',5'-dihydrospiro[benzo[*d*][1,3,2]dioxaborole-2,2'-[1,3,2]diazaborol]-3'ium-9-uide (**5**)

Yield: 92 mg (63%, 0.24 mmol). M.P. = 160°C (decomp). Anal. calc. for $C_{24}H_{25}N_2BO_2$ (384.29 g/mol) (%): C 75.01, H 6.56, N 7.29. Found: C 74.48, H 6.55, N 7.17. ¹H NMR (400 MHz, CDCl₃) δ : 1.62 (d, J = 6.9 Hz, 3H), 2.17 (s, 3H), 2.21 (s, 3H), 2.26 (s, 3H), 4.81 (q, J = 6.9 Hz, 1H), 6.48 (d, J = 8.2 Hz, 2H), 6.55-6.58 (ov m, 3H), 6.67 (d, J = 6.0 Hz, 1H), 6.91 (d, J = 8.2 Hz, 2H), 7.08 (ov m, 4H). ¹¹B NMR (128 MHz, CDCl₃) δ : 11.6 (br). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 16.0, 17.1, 20.5, 21.2, 59.7, 109.2, 109.4, 115.1, 118.9, 123.8, 129.7, 130.1, 130.2, 134.7, 139.1, 150.6, 151.2, 151.9, 187.1.

Figure S9. ¹H NMR of 4',5'-dimethyl-1',3'-di-*p*-tolyl-1',5'-dihydrospiro[benzo[*d*][1,3,2]dioxaborole-2,2'-[1,3,2]diazaborol]-3'-ium-9-uide (**5**) in CDCl₃.

Figure S10. ¹³C NMR of 4',5'-dimethyl-1',3'-di-*p*-tolyl-1',5'-dihydrospiro[benzo[*d*][1,3,2]dioxaborole-2,2'-[1,3,2]diazaborol]-3'-ium-9-uide (**5**) in CDCl₃.

1',3'-bis(4-methoxyphenyl)-4',5'-dimethyl-1',5'-dihydrospiro[benzo[*d*][1,3,2]dioxaborole-2,2'-[1,3,2]diazaborol]-3'-ium-9-uide (**6**)

Yield: 110 mg (78%, 0.26 mmol). M.P. = 115°C (decomp). Anal. calc. for $C_{24}H_{25}N_2BO_4$ (416.28 g/mol) (%): C 69.25, H 6.05, N 6.73. Found: C 68.58, H 6.22, N 6.64. ¹H NMR (400 MHz, CDCl₃) δ : 1.60 (d, J = 6.8 Hz, 3H), 2.22 (s, 3H), 3.68 (s, 3H), 3.73 (s, 3H), 4.76 (q, J = 6.8 Hz, 1H), 6.50 (d, J = 9.2 Hz, 2H), 6.55-6.61 (ov m, 3H), 6.70 (m, 3H), 6.79 (d, J = 8.5 Hz, 2H), 7.11 (d, J = 8.7 Hz, 2H). ¹¹B NMR (128 MHz, CDCl₃) δ : 11.5 (br). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 16.0, 17.3, 55.4, 55.8, 59.8, 109.2, 109.4, 114.6, 115.0, 115.6, 118.9, 125.2, 130.0, 139.0, 151.2, 151.5, 151.9, 159.7, 187.0.

Figure S11. ¹H NMR of 1',3'-bis(4-methoxyphenyl)-4',5'-dimethyl-1',5'dihydrospiro[benzo[*d*][1,3,2]dioxaborole-2,2'-[1,3,2]diazaborol]-3'-ium-9-uide (**6**) in CDCl₃.

Figure S12. ¹³C NMR of 1',3'-bis(4-methoxyphenyl)-4',5'-dimethyl-1',5'dihydrospiro[benzo[*d*][1,3,2]dioxaborole-2,2'-[1,3,2]diazaborol]-3'-ium-9-uide (**6**) in CDCl₃.

1',3'-bis(4-fluorophenyl)-4',5'-dimethyl-1',5'-dihydrospiro[benzo[*d*][1,3,2]dioxaborole-2,2'-[1,3,2]diazaborol]-3'-ium-9-uide (**7**)

Yield: 86 mg (60%, 0.22 mmol). M.P. = 120° C (decomp). Anal. calc. for $C_{22}H_{19}N_2BO_4F_2$ (392.21 g/mol) (%): C 67.37, H 4.88, N 7.14. Found: C 67.04, H 4.97, N 7.12. ¹H NMR (400 MHz, CDCl₃) δ : 1.63 (d, J = 6.9 Hz, 3H), 2.25 (s, 3H), 4.78 (q, J = 6.9 Hz, 1H), 6.47 (m, 2H), 6.58-6.62 (ov m, 3H), 6.68 (br, 1H), 6.82 (t, J = 8.7 Hz, 2H), 7.01 (t, J = 8.2 Hz, 2H), 7.18 (m, 2H). ¹¹B NMR (128 MHz, CDCl₃) δ : 11.6 (br). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 16.0, 17.1, 59.9, 109.4, 109.6, 115.4 (d, J_{C-F} = 10 Hz), 115.7 (d, J_{C-F} = 28 Hz), 116.7 (d, J_{C-F} = 29 Hz), 119.3, 125.9 (d, J_{C-F} = 12 Hz), 133.0 (d, J_{C-F} = 1.1 Hz), 141.0, 150.9, 151.5, 156.9, 163.8, 187.4. ¹⁹F NMR (376 MHz, CDCl₃) δ : -111.2 (t, J = 7.9 Hz), -128.7 (br).

Figure S13. ¹H NMR of 1',3'-bis(4-fluorophenyl)-4',5'-dimethyl-1',5'dihydrospiro[benzo[*d*][1,3,2]dioxaborole-2,2'-[1,3,2]diazaborol]-3'-ium-9-uide (**7**) in CDCl₃.

Figure S14. ¹³C NMR of 1',3'-bis(4-fluorophenyl)-4',5'-dimethyl-1',5'dihydrospiro[benzo[*d*][1,3,2]dioxaborole-2,2'-[1,3,2]diazaborol]-3'-ium-9-uide (**7**) in CDCl₃.

X-Ray Crystallography

Crystals were grown from dilute Et_2O solutions. Single crystals were coated with Paratone-N oil, mounted using a polyimide MicroMount and frozen in the cold nitrogen stream of the goniometer. A hemisphere of data was collected on a Bruker AXS P4/SMART 1000 diffractometer using ω and ϕ scans with a scan width of 0.3 ° and 10 s exposure times. The detector distance was 5 cm. The data were reduced (SAINT)¹ and corrected for absorption (SADABS).² The structure was solved by direct methods and refined by full-matrix least squares on F2(SHELXTL)³. All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms were included in calculated positions and refined using a riding model.

1 SAINT 7.23A, 2006, Bruker AXS, Inc., Madison, Wisconsin, USA.

2 SADABS 2008, George Sheldrick, 2008, Bruker AXS, Inc., Madison, Wisconsin, USA.

3 Sheldrick, G.M. (2008). SHELXTL. Acta Cryst. A64, 112-122.

Complex	3	6	7
Formula	C ₃₈ H ₄₆ B ₂ N ₂ O ₄	C ₂₄ H ₂₅ BN ₂ O ₄	C ₂₂ H ₁₉ BF ₂ N ₂ O ₄
Molecular weight	616.39	416.27	392.20
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	P2(1)/c	P2(1)/c
a/Å	28.1959(14)	10.4891(3)	9.9992(4)
b/Å	11.5570(6)	8.8508(3)	8.9229(4)
c/Å	22.0519(11)	22.8286(7)	21.8330(8)
α/°	90	90	90
β/°	101.603(2)	91.108(2)	99.004(2)
γ / °	90	90	90
V/Å ³	7039.0(6)	2118.94(11)	1923.98(14)
Ζ	8	4	4
$\rho_{calc.}/Mg\ m^{-3}$	1.163	1.305	1.354
Crystal size/mm ³	0.518 x 0.24 x 0.16	0.22 x 0.13 x 0.124	0.24 x 0.231 x 0.09
Temp/K	170.0	169.99	169.84

Table 1. Crystallographic Data-Collection Parameters

Radiation	Μο- <i>K</i> _α (λ=0.71073	Cu- <i>K</i> _α (λ=1.54178	Cu- <i>K</i> _α (λ=1.54178
	Å)	Å)	Å)
µ/mm ⁻¹	0.074	0.713	0.828
Total reflections	115455	40528	41998
Total unique	7826	4028	3925
reflections			
No. of variables	423	284	264
heta Range/°	2.95 to 27.21	3.873 to 70.129	4.1 to 74.852
Largest difference	0.20 and -0.20	0.24 and -0.27	0.33 and -0.43
peak/hole/e Å ⁻³			
S (GoF) on F ²	1.089	1.046	1.052
R1ª (/>20(/))	0.0491	0.0453	0.0578
wR2 ^b (all data)	0.1062	0.1289	0.1652

^{*a*}) $R1 = \sum ||F_0| - |F_c|| / \sum |F_0|$. ^{*b*}) $wR2 = (\sum [w(F_0^2 - F_c^2)^2] / \sum [wF_0^4])^{1/2}$, where $w = 1/[\sigma^2(F_0^2) + (0.0559 \cdot P)^2 + (0.0350 \cdot P] (1), 1/[\sigma^2(F_0^2) + (0.497 \cdot P)^2 + (1.8527 \cdot P)] (3)$, where $P = (\max (F_0^2, 0) + 2 \cdot F_c^2)/3$.