Accelerated and scalable synthesis of UiO-66(Zr) with the assistance of inorganic salt under solvent-free condition

Yulong Gu,^a Xiaolin Li,^b Gan Ye,^a Zhen Gao,^a Wei Xu,^c Yinyong Sun*a

^aMIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China

^bInstitute of Intelligent Manufacturing Technology, Shenzhen Polytechnic, Shenzhen, 518055, China

^cState Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China

Zr/Na	BET surface	Langmuir	Langmuir Micropore Aver	
(molar)	area	surface area	volume	size
	(m²/g)	(m²/g)	(mL/g)	(nm)
œ	354	462	0.14	1.16
8:1	379	519	0.16	0.63
4:1	969	1427	0.48	0.66
2:1	808	1205	0.40	0.66
1:1	624	836	0.27	0.63
3:2	651	882	0.29	0.65

Table S1. N_2 sorption data of samples prepared with different molar ratios of Zr/Na at 130°C for 3 h.

Table S2. N_2 sorption data of samples prepared at different crystallization temperatures for 3 h.

Temnerature	BET surface	Langmuir	Micropore	Average pore
(%)	area	surface area	volume	size
(*6)	(m²/g)	(m²/g)	(mL/g)	(nm)
110	33	54	0.01	1.43
120	43	66	0.02	1.37
130	969	1427	0.48	0.66

Crystallization	BET surface	Langmuir	Micropore	Average pore
time	area	surface area	volume	size
(h)	(m²/g)	(m²/g)	(mL/g)	(nm)
1	92	143	0.04	1.11
2	330	494	0.16	0.60
3	969	1427	0.48	0.66

Table S3. N_2 sorption data of samples prepared for different crystallization time at 130°C.

Table S4. N_2 sorption data of samples prepared with the addition of different inorganic salts.

Inorganic salts	BET surface area	Langmuir surface area	Micropore	Average pore size
	(m²/g)	(m²/g)	(mL/g)	(nm)
KCl	1101	1442	0.48	0.71
NH ₄ Cl	991	1259	0.42	0.68
NaI	826	1099	0.36	0.67
NaF	282	403	0.12	0.67

Samples	BET surface area	Langmuir surface area	Micropore volume	Average pore size
	(m²/g)	(m²/g)	(mL/g)	(nm)
UiO-66(Zr)-Solvent	1133	1479	0.51	0.67
UiO-66(Zr)-NaCl	969	1427	0.48	0.66

Table S5. Textural properties of UiO-66(Zr) obtained by different synthesis method.

Table S6. N₂ sorption data of UiO-66(Zr) synthesized on small and large scales.

	BET surface	Langmuir	Micropore	Average
Samples	area	surface area	volume	pore size
	(m ² /g)	(m²/g)	(mL/g)	(nm)
UiO-66(Zr)-NaCl (small)	969	1427	0.48	0.66
UiO-66(Zr)-NaCl (large)	1030	1335	0.46	0.66

Table S7. N_2 sorption data of UiO-66(Zr)-NH₂ and UiO-66(Zr)-NO₂ synthesized with the addition of NaCl.

Samples	BET surface area	Langmuir surface area	Micropore volume	Average pore size
	(m ² /g)	(m²/g)	(mL/g)	(nm)
UiO-66(Zr)-NH ₂ -NaCl	833	1060	0.36	0.64
UiO-66(Zr)-NO ₂ -NaCl	619	783	0.26	0.61

Fig. S1. Pore distribution curves of samples prepared with different molar ratios of Zr/Na at 130°C for 3 h.

Fig. S2. Pore distribution curves of samples prepared at different crystallization temperatures for 3 h.

Fig. S3. Pore distribution curves of samples prepared for different crystallization time at 130°C.

Fig. S4. Pore distribution curves of samples prepared with the addition of different inorganic salts.

Fig. S5. PXRD patterns of different samples.

Fig. S6. N₂ sorption isotherms of different samples.

Fig. S7. TG curve of UiO-66(Zr)-NaCl.

Fig. S8. Pore distribution curves of UiO-66(Zr)-NaCl and UiO-66(Zr)-Solvent

Fig. S9. Pore distribution curves of UiO-66(Zr)-NaCl synthesized on small and large scales.

Fig. S10. Pore distribution curves of UiO-66(Zr)-NH₂ and UiO-66(Zr)-NO₂ synthesized with the addition of NaCl.

Fig. S11. FT-IR spectra of various samples.

Fig. S12. N_2 sorption isotherms of the sample prepared without grinding in the presence of NaCl.