Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Figure S1 The XRD pattern of the material obtained during the heating process

Figure S2 The ³¹P MAS NMR and ²⁷Al MAS NMR spectra of the AIPO₄-A material

Figure S3 The SEM images of the AIPO $_4$ -A material and the crystallization products obtained in 0-48 h

Synthesis	precursor	Mesopores	Crystallization	Ref.
method			time / h	
Dry-gel conversion	1.0 Al ₂ O ₃ :1.0 P ₂ O ₅ :0.6SiO ₂ :2.0 TEAOH	Hollow structure, the intracrystalline meso/macro-pores, which can only be accessed through the crystalline 8-ring channel	>12	[24]
Seeding	1.0Al ₂ O ₃ : 1.0P ₂ O ₅ :(0.2 ~5.0)TEA: (0.4~0.8)SiO ₂ : 70H ₂ O, 8%wt seeds	Intracrystalline micro/macro-pores, part of which connected directly to the crystal surface	>6	[21],[35]
Two-step approach with crystalline AIPO₄ as intermediat e	$1.0AI_2O_3$: $1.0P_2O_5$:2TE A: 0.5TEAOH:0. $3SiO_2$: $31H_2O,$ 8%wt seeds	Intracrystalline mesopores, almost all of which can be accessed through the zeolite surface	>4	This paper

Table S1 The comparison with the reported methods for hierarchical synthesis with only TEA/TAOH

Figure S4 The peak-fitting of the ³¹P MAS NMR spectra of (A) SPAO-34-31, (B) SAPO-34-11, and (C) SAPO-34-II

Figure S5 The peak-fitting of the ²⁹Si MAS NMR spectra of (A) SPAO-34-31, (B) SAPO-34-11, and (C) SAPO-34-II

Figure S6 The NH₃-TPD profile of the SAPO-34 samples