Supplementary Information

Chiral Organic-Inorganic Lead Halide Perovskites Based on α-Alanine

Valerii Y. Sirenko,^a Olesia I. Kucheriv,^a, Dina D. Naumova,^a Igor V. Fesych,^a Rostyslav P. Linnik,^a Ioan-Andrei Dascălu,^b Sergiu Shova,^b Igor O. Fritsky,^a and Il'ya A. Gural'skiy^{*a}

^aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine

^b"Petru Poni" Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania

*Corresponding author: illia.guralskyi@univ.kiev.ua

	I-D	I-L	Br-D	Br-L
Formula	C ₃ H ₁₀ I ₃ NO ₃ Pb	C ₃ H ₁₀ Br ₃ NO ₃ Pb	C ₃ H ₁₀ I ₃ NO ₃ Pb	C ₃ H ₁₀ Br ₃ NO ₃ Pb
Formula weight	696.01 g/mol	696.01 g/mol	555.04 g/mol	555.04 g/mol
Temperature/K	293 K	293(2) K	293(2) K	296.0 K
Crystal size/mm ³	0.41×0.24×0.09	0.234×0.163×0.04	0.3×0.1×0.05	0.3×0.15×0.1
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	<i>C</i> 2	<i>C</i> 2	<i>C</i> 2	<i>C</i> 2
a/Å	22.560(3)	22.6435(14)	21.8559(18)	21.836(4)
b/Å	6.4430(5)	6.4529(4)	6.0868(6)	6.0904(11)
c/Å	8.9978(7)	9.0191(6)	8.7692(8)	8.790(3)
$eta/^{\circ}$	92.204(9)	92.107(6)	93.177(8)	92.41(2)
$V/Å^3$	1306.9(2)	1316.95(14)	1164.80(18)	1167.9(5)
Z	4	4	4	4
Calc. density/g cm ⁻³	3.537	3.510	3.165	3.157
μ/mm^{-1}	19.971	19.818	24.745	24.679
F(000)	1200.0	1200.0	984.0	984.0
Radiation type	Mo <i>K</i> α (λ = 0.71073)	Mo <i>K</i> α (λ = 0.71073)	Mo $K\alpha$ ($\lambda = 0.71073$)	Mo <i>K</i> α (λ = 0.71073)
20 range for data collection/°	4.53 to 52.722	3.6 to 52.704	3.732 to 52.706	3.734 to 52.694
Index ranges	$\begin{array}{l} -28 \leq h \leq 23, -8 \\ \leq k \leq 8, -11 \leq l \leq \\ 11 \end{array}$	$\begin{array}{l} -28 \leq h \leq 28, \ -8 \leq \\ k \leq 8, \ -11 \leq l \leq 11 \end{array}$	$\begin{array}{l} -27 \leq h \leq 27, -7 \leq k \\ \leq 7, -7 \leq l \leq 10 \end{array}$	$\begin{array}{l} -23 \leq h \leq 27, -7 \leq \\ k \leq 7, -10 \leq l \leq 9 \end{array}$
Reflections collected	3595	2684	2397	4219
Independent reflections	3595	2684	2397	2392
Rsigma	0.0328	0.0536	0.0734	0.0539

Table S1.	Crystal	data for	I-D, I-L	, Br-D	and Br-L
-----------	---------	----------	----------	---------------	----------

R _{int}	-	-	-	0.0293
Data/restraints/pa rameters	3595/38/103	2684/1/103	2397/2/101	2392/2/100
Goodness-of-fit on F ²	1.086	1.107	1.049	1.061
Final R indexes [I $\geq 2\sigma(I)$]	$\begin{array}{l} R_1 &= & 0.0873, \\ wR_2 &= & 0.2570 \end{array}$	$R_1 = 0.0563, wR_2 = 0.1515$	$R_1 = 0.0603, wR_2 = 0.1401$	$\begin{array}{l} R_1 = 0.0436, \ wR_2 \\ = 0.0981 \end{array}$
Final R indexes [all data]	$\begin{array}{ll} R_1 &=& 0.0946, \\ wR_2 &= 0.2665 \end{array}$	$R_1 = 0.0620, wR_2 = 0.1560$	$R_1 = 0.0694, wR_2 = 0.1506$	$\begin{array}{l} R_1 = 0.0513, \ wR_2 \\ = 0.1037 \end{array}$
Largest diff. peak/hole/e Å ⁻³	3.37/-3.01	4.57/-3.10	5.17/-4.15	1.33/-0.98
Flack parameter	0.03(2)	0.031(11)	0.06(2)	0.01(3)
CCDC No.				

I-D			
C1—C2	1.52(7)	I1—Pb1	3.231(3)
C1—01	1.16(5)	I2—Pb1 ²	3.177(3)
C1—O2	1.34(5)	I2—Pb1	3.214(3)
C2—C3	1.48(6)	I3—Pb1 ³	3.224(6)
C2—N1	1.51(6)	I3—Pb1	3.234(6)
I1—Pb1 ¹	3.220(3)		

Table S2. Bond lengths for I-D, I-L, Br-D and Br-L (Å) and Σ (°), Δd , σ^2 (°)² for I-L and Br-L

Symmetry transformations used to generate equivalent atoms:

¹1-X,+Y,1-Z; ²1-X,+Y,2-Z; ³+X,1+Y,+Z

I-L

C1—C2	1.50(4)	I1—Pb1 ¹	3.234(4)
C1—O1	1.21(3)	I2—Pb1	3.2200(17)
C1—O2	1.25(3)	I2—Pb1 ²	3.2453(15)
C2—C3	1.50(4)	I3—Pb1	3.1918(15)
C2—N1	1.50(3)	I3—Pb1 ³	3.2265(16)
I1—Pb1	3.233(3)		
Σ, (°)	37.28		
Δd	2.70.10-5		
σ ² , (°) ²	13.87		

Symmetry transformations used to generate equivalent atoms:

¹+X,1+Y,+Z; ²1-X,+Y,-Z; ³1-X,+Y,1-Z

Br-D

$Br1$ — $Pb1^1$	3.015(2)	C1—C2	1.52(3)
Br1—Pb1	3.073(2)	C1—01	1.16(3)
Br2—Pb1	2.959(7)	C1—O2A	1.31(3)
$Br2$ — $Pb1^2$	3.140(7)	C1—O2B	1.31(3)

$Br3$ — $Pb1^3$	2.991(2)	C2—C3	1.44(3)
Br3—Pb1	3.039(2)	C2—N1	1.43(3)

Symmetry transformations used to generate equivalent atoms:

¹1-X,+Y,2-Z; ²+X,-1+Y,+Z; ³1-X,+Y,1-Z

Br-L

Pb1—Br ¹	3.060(2)	N1—C2	1.47(2)
Pb1—Br1	3.0363(17)	C1—O1	1.15(2)
Pb1—Br2 ²	3.0617(18)	C1—O2B	1.35(2)
Pb1—Br2	2.9713(19)	C1—C2	1.52(3)
Pb1—Br3	2.974(5)	C1—O2A	1.35(2)
Pb1—Br3 ³	3.129(5)	С2—С3	1.48(3)

Σ, (°)	36.24
Δd	3.23.10-4
σ^2 , (°) ²	15.48

Symmetry transformations used to generate equivalent atoms:

¹1-X,+Y,1-Z; ²1-X,+Y,-Z; ³+X,-1+Y,+Z

$D - H \cdots A$	d(D-H)/Å	d(H <i>A</i>)/Å	d(DA)/Å	$\angle D - \mathrm{H}A/^{\circ}$
I-D				
N1 – H1A…I1	0.89	2.70	3.54(3)	156.4
$N1-H1A\cdots I3^1$	0.89	3.41	3.77(3)	106.7
$N1-H1B\cdots I1^2$	0.89	2.79	3.60(4)	152.0
$N1-H1C\cdots O1^3$	0.89	2.04	2.77(5)	138.9
$N1-H1C\cdots O1W^3$	0.89	2.63	3.05(5)	109.8
O2 – H2A…O1W	0.85	1.77	2.62(6)	171.2
$O1W-H1WA\cdots I2^4$	0.87	2.77	3.61(4)	162.7
$O1W-H1WB\cdots I3^4$	0.86	2.73	3.58(4)	169.9
$C3 - H3A \cdots O1^3$	0.97	2.87	3.51	124.7
C3 – H3B… O2	0.96	2.77	3.54	137.0
Symmetry transformati	ons used to gene	erate equivalent a	atoms:	
¹ 1-X,-1+Y,1-Z; ² +X,-1	+Y,+Z; ³ 1/2-X,1	/2+Y,1-Z; ⁴ 1/2-Z	X,-3/2+Y,1-Z	
I-L				
N1-H1AO1	0.89	1.97	3.85(3)	172.7
$N1-H1B\cdots I2^2$	0.89	2.72	3.52(2)	149.2
N1-H1CI1	0.89	3.01	3.741(19)	141.2
$N1 - H1C \cdots I2$	0.89	3.02	3.62(2)	126.3
O2 – H2AO1W	0.82	1.79	2.59(3)	166.5
$O1W-H1WAI1^3$	0.86	2.85	3.68(2)	162.3
$O1W-H1WB\cdots I3^4$	0.86	2.84	3.68(3)	164.6
C3 - H3C - O2	0.96	2.68	3.51	144.5
$C3-H3A\cdots O1^1$	0.96	3.18	3.61	109.5

Table S3. Hydrogen bonding geometry of I-D, I-L, Br-D and Br-L (Å, °)

Symmetry transformations used to generate equivalent atoms:

¹3/2-X,-1/2+Y,-Z; ²+X,1+Y,+Z; ³1/2+X,1/2+Y,+Z; ⁴3/2-X,3/2+Y,1-Z

Br-D

N1 – H1A…Br1	0.89	2.74	3.400(19)	131.7
N1 – H1A…Br2	0.89	2.90	3.590(16)	135.1
$N1 - H1B \cdots Br1^1$	0.89	2.49	3.318(19)	154.9
$N1 - H1C \cdots O1^2$	0.89	1.98	2.86(3)	168.4
O2A – H2A…O1W	0.86	1.80	2.66(5)	170.3
O2B – H2B…O1W	0.86	1.77	2.61(5)	161.9
$O1W - H1WA - Br2^3$	0.87	2.68	3.503(19)	158.7
$O1W - H1WB - Br3^4$	0.84	2.54	3.366(18)	169.8
$C3 - H3A \cdots O1^2$	0.96	2.65	3.42	138.1
C3 – H3B…O2	0.96	2.68	3.47	138.8

Symmetry transformations used to generate equivalent atoms:

¹+X,-1+Y,+Z; ²1/2-X,1/2+Y,2-Z; ³-1/2+X,-1/2+Y,+Z; ⁴1/2-X,-3/2+Y,1-Z

Br-L

$N1 - H1A \cdots Br1^1$	0.89	2.65	3.395(14)	142.2
$N1 - H1A \cdots Br3^2$	0.89	2.98	3.564(13)	125.0
$N1 - H1B \cdots O1^3$	0.89	1.98	2.833(18)	159.4
N1-H1CBr1	0.89	2.46	3.320(14)	163.4
$O1W-H1WABr2^4$	0.86	2.60	3.384(15)	151.6
$O1W - H1WB \cdots Br3^3$	0.87	2.63	3.475(14)	166.3
O2B – H2B…O1W	0.87	1.75	2.61(3)	170.5
O2A – H2A … O1W	0.86	1.75	2.61(3)	173.9
C3 – H3B … O2	0.96	2.69	3.44	134.6
$C3 - H3C - O1^{3}$	0.96	2.68	3.44	136.5

Symmetry transformations used to generate equivalent atoms:

¹+X,-1+Y,+Z; ²1-X,-1+Y,1-Z; ³3/2-X,-1/2+Y,1-Z; ⁴3/2-X,1/2+Y,1-Z

Figure S1. View of the 2D anionic inorganic polymeric ${[PbBr_3]}_n$ layers.

Figure S2. Optical images of I-L melting.

Figure S3. IR spectrum of I-D

Figure S4. IR spectrum of Br-D

Figure S6. IR spectrum of Br-L

Figure S8. TGA measurements for Br-L

Figure S10 TGA measurements for I-L

Figure S11. TGA measurements for I-L in repeated cycles

Figure S12. TGA measurements for Br-L in repeated cycles