Comparative Study of the Photophysical and Crystallographical Properties of 4-(9H-Pyreno[4,5-d]imidazol-10-yl)phenol and Its Alkylated Derivatives

Zahra A. Tabasi, Joshua C. Walsh, Graham J. Bodwell, David W. Thompson, and Yuming Zhao*

Department of Chemistry, Memorial University, St. John's, Newfoundland and Labrador, CANADA A1B 3X7; yuming@mun.ca

Table of Content

1. Experimental S2
2. NMR Spectra of Compounds 1-3 S4
3. Crystallographic Data for Compounds 1-3 S9
4. Summary of UV-Vis Absorption Properties for 1-3 S11

1. Experimental

1.1 Synthesis and Characterization

Compound 1 was prepared using the previously reported synthetic method. ${ }^{1}$ Alkylation of $\mathbf{1}$ resulted in the formation of compounds 2 and 3, which were separated by silica flash column chromatography. All compounds were subjected to NMR, IR, and MS analyses to confirm their structures and purity. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Bruker 300 MHz AVANCE III spectrometer. Infrared (IR) spectra were recorded on a Bruker Alfa spectrometer. Highresolution mass spectrometric (HRMS) analyses were performed on a GCT premier Micromass Technologies instrument.

4-(9H-Pyreno[4,5- d]imidazol-10-yl)phenol (1)

Pyrene-4,5-dione ($0.20 \mathrm{~g}, 0.86 \mathrm{mmol}$), p-hydroxybenzaldehyde ($0.32 \mathrm{~g}, 2.6 \mathrm{mmol}$), ammonium acetate ($1.3 \mathrm{~g}, 17 \mathrm{mmol}$), and glacial acetic acid $(99.7 \%, 7 \mathrm{~mL})$ were mixed in a round-bottom flask equipped with a condenser. The reaction was heated at $110^{\circ} \mathrm{C}$ for 5 h , and then slowly cooled down to rt. The resulting precipitate was collected by vacuum filtration and then sequentially washed with glacial acetic acid, saturated NaHCO_{3} solution (aq), and water to yield crude product 1, which was subjected to silica flash column chromatography using EtOAc/hexanes (10:90, v/v) as eluent to afford pure compound $1\left(0.15 \mathrm{~g}, 0.45 \mathrm{mmol}, 52 \%, R_{\mathrm{f}}=\right.$ 0.22) as a black solid. IR (neat): $3612,3458,3221,2920,2852,1728,1605,1541,1248,1175$, 889, 762, $716 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.77$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 8.18-8.02 (m, $8 \mathrm{H}), 7.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$; A meaningful ${ }^{13} \mathrm{C}$ NMR spectrum was not obtained due to limited solubility; HRMS (MALDI-TOF): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 335.1184$ found 335.1171 .

10-(4-(Decyloxy)phenyl)-9H-pyreno[4,5-d]imidazole (2)

To a solution of compound $1(0.10 \mathrm{~g}, 0.30 \mathrm{mmol})$ in absolute ethanol $(7.0 \mathrm{~mL})$ were added 1bromodecane ($0.066 \mathrm{~g}, 0.30 \mathrm{mmol}$) and potassium carbonate $(0.041 \mathrm{~g}, 0.30 \mathrm{mmol})$. The reaction mixture was heated at reflux for 4 h , and then another portion of potassium carbonate (0.020 g , 0.15 mmol) was added. After keeping reflux for another 6 h , the reaction mixture was slowly cooled down to rt . The solvent was removed by rotary evaporation and the crude mixture of alkylated products was purified by silica flash column chromatography using EtOAc/hexanes ($5: 95, \mathrm{v} / \mathrm{v}$) as eluent. Compound $2\left(0.064 \mathrm{~g}, 0.13 \mathrm{mmol}, 43 \%, R_{\mathrm{f}}=0.59\right)$ was obtained as a white crystalline solid. IR (neat): $3498,3359,2946,2852,1632,1613,1468,1248,1185,998,716,666$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , acetone- d_{6}): $\delta 13.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.91-8.71(\mathrm{~m}, 2 \mathrm{H}), 8.31(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 8.24(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.22-8.09(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.85-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.18(\mathrm{~m}, 14 \mathrm{H}), 0.86(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(75$

[^0]MHz , acetone- d_{6}): $\delta 160.2,150.1,137.9,132.1,131.9,128.3,128.2,127.9,126.8,126.6,123.3$, $122.2,122.0,119.5,119.3,119.2,115.3,68.1,31.8,29.5,29.4,29.3,29.2,26.0,22.6,14.4 \mathrm{ppm}$ (four aromatic and one aliphatic carbon signals not observed due to coincidental overlap); HRMS (MALDI-TOF): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 475.2749$ found 475.2752.

9-Decyl-10-(4-(decyloxy)phenyl)-9H-pyreno[4,5-d]imidazole (3)

In the above alkylation reaction, compound $3\left(0.046 \mathrm{~g}, 0.075 \mathrm{mmol}, 25 \%, R_{\mathrm{f}}=0.76\right)$ was obtained as a white crystalline solid after silica column chromatographic separation. IR (neat): 2918, 2848, 1591, 1426, 1242, 1180, 1016, 824, 715, 657, 630, $540 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , acetone- d_{6}): $\delta 8.96(\mathrm{dd}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.26-8.22(\mathrm{~m}, 2 \mathrm{H}), 8.21-$ $8.08(\mathrm{~m}, 4 \mathrm{H}), 7.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.49-11.5(\mathrm{~m}, 28 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.84(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz , acetone- d_{6}): $\delta 160.2,153.2,138.5,132.4$, $131.8,131.4,127.8,127.7,126.9,126.2,126.0,124.1,124.0,123.6,123.0,119.3,118.2,114.5$, $67.9,46.6,31.75,31.68,29.2,29.0,25.93,25.86,22.44,22.38,13.5,13.4 \mathrm{ppm}$ (three aromatic carbon signals not observed due to coincidental overlap, and eight aliphatic carbon signals not observed due to overlap with solvent signals); HRMS (MALDI-TOF): m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 615.4314$ found 615.4290 .

1.2 UV-Vis absorption and fluorescence spectroscopic analysis

UV-Vis absorption spectra were recorded using a Cary 6000i spectrophotometer. Fluorescence spectra were measured on a Photon Technology International (PTI) QuantaMaster spectrofluorometer. Relative fluorescence quantum yields $\left(\phi_{F}\right)$ were measured following reported procedures using quinine sulfate $\left(\phi_{\mathrm{F}}=0.546\right)$ as the standard. ${ }^{2}$

1.3 Crystallization conditions and X-ray crystallographic analysis

Single crystals of compounds $\mathbf{1 - 3}$ suitable for X-ray diffraction analysis were grown from mixture of solvents ($1: 1$ hexanes/methanol for 1 , and 5:95 ethyl acetate/hexanes for 2 and 3) by slow evaporation at room temperature. Single-crystal X-ray diffraction (SXRD) analysis was performed on a Bruker PLATFORM/APEX II CCD diffractometer, and the crystal structures were solved by direct methods using the $S H E L X D$ program ${ }^{3}$ and refined by full-matrix leastsquares methods with SHELXL-2014. ${ }^{4}$ Hirschfeld surface analysis was carried out using the CrystalExplore software package. ${ }^{5}$

[^1]
2. NMR Spectra of Compounds 1-3

Fig. S-1 ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of compound $\mathbf{1}$.

Supporting Information for

Fig. S-2 ${ }^{1} \mathrm{H}$ NMR (300 MHz , acetone- d_{6}) spectrum of compound 2.

Fig. S-3 ${ }^{13} \mathrm{C}$ NMR (75 MHz , acetone- d_{6}) spectrum of compound 2 .

Supporting Information for

Fig. S-4 ${ }^{1} \mathrm{H}$ NMR (300 MHz , acetone- d_{6}) spectrum of compound 3.

Fig. S-5 ${ }^{13} \mathrm{C}$ NMR (75 MHz , acetone- d_{6}) spectrum of compound 3.

Supporting Information for

2. Crystallographic Data for Compounds 1-3

Table S-1 Crystallographic and experimental data for compound 1

Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$
Formula weight	366.40
Temperature/K	-173
Crystal system	monoclinic
Space group	$P 2_{1} / n$ (an alternate setting of $P 2{ }_{1} / c$ [No. 14])
a/ \AA	12.6038(2)
b/Å	8.2717(2)
c/Å	18.3638(4)
$\beta /{ }^{\circ}$	109.1087(12)
Volume/ \AA^{3}	1809.02(7)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.345
μ / mm^{-1}	0.691
Crystal size/ $/ \mathrm{mm}^{3}$	$0.14 \times 0.13 \times 0.10$
Radiation	$\mathrm{Cu} \mathrm{K}{ }_{\alpha}(1.54178)$ (microfocus source)
2Θ range for data collection/ ${ }^{\circ}$	7.50 to 147.70
Index ranges	$-15 \leq \mathrm{h} \leq 15,-10 \leq \mathrm{k} \leq 10,-22 \leq 1 \leq 22$
Reflections collected	12501
Independent reflections	$3591\left[R_{\text {int }}=0.0212\right]$
Data/restraints/parameters	3591/0/266
Goodness-of-fit (S) [all data]	1.079
Final $R_{1}\left[F_{0}{ }^{2} \geq 2 \sigma\left(F_{0}{ }^{2}\right)\right]$	0.0425
Final $w R_{2}$ [all data]	0.1314
$\underline{\text { Largest diff. peak/hole / e } \AA^{-3}}$	0.285/-0.325

Table S-2 Crystallographic and experimental data for compound 2

Empirical formula	$\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3}$
Formula weight	510.65
Temperature/K	$100(2)$
Crystal system	triclinic
Space group	$P-1$
a / \AA	$8.9659(3)$
b / \AA	$8.9998(3)$
c / \AA	$19.2836(7)$
$\alpha /{ }^{\circ}$	$87.414(3)$
$\beta /{ }^{\circ}$	$79.965(3)$
$\gamma /{ }^{\circ}$	$63.475(3)$
Volume $/ \AA^{3}$	$1369.99(9)$

Supporting Information for

Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm} 3$	1.238
μ / mm^{-1}	0.620
$\mathrm{~F}(000)$	548.0
Crystal size $/ \mathrm{mm}^{3}$	$0.15 \times 0.1 \times 0.05$
Radiation	$\mathrm{Cu} \mathrm{K}_{\alpha}(\lambda=1.54184)$
2Θ range for data collection $/^{\circ}$	4.656 to 155.11
Index ranges	$-11 \leq \mathrm{h} \leq 10,-11 \leq \mathrm{k} \leq 11,-18 \leq 1 \leq 24$
Reflections collected	19003
Independent reflections	$5677\left[R_{\text {int }}=0.0325, R_{\text {sigma }}=0.0229\right]$
Data/restraints/parameters	$5677 / 0 / 364$
Goodness-of-fit on $F 2$	1.058
Final R indexes $[I>=2 \sigma(I)]$	$R_{1}=0.0479, w R_{2}=0.1304$
Final R indexes $[$ all data $]$	$R_{1}=0.0550, w R_{2}=0.1371$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.28 /-0.30$

Table S-3 Crystallographic and experimental data for compound 3

Empirical formula	$\mathrm{C}_{43} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	614.88
Temperature/K	-173
Crystal system	triclinic
Space group	$P \overline{1}(\mathrm{No} 2)]$.
a / \AA	$9.4376(3)$
b / \AA	$11.2292(4)$
c / \AA	$17.0583(6)$
$\alpha /{ }^{\circ}$	$90.117(2)$
$\beta /{ }^{\circ}$	$93.940(2)$
$\gamma /{ }^{\circ}$	$101.967(2)$
Volume $/ \AA^{3}$	$1764.07(11)$
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.158
μ / mm^{-1}	0.516
Crystal size $/ \mathrm{mm}^{3}$	$0.63 \times 0.09 \times 0.07$
Radiation	$\mathrm{Cu} \mathrm{K}_{\alpha}(\lambda=1.54178)($ microfocus source $)$
2Θ range for data collection $/{ }^{\circ}$	5.20 to 147.82
Index ranges	$-11 \leq \mathrm{h} \leq 11,-13 \leq \mathrm{k} \leq 14,-21 \leq 1 \leq 21$
Reflections collected	60985
Independent reflections	$6879\left(R_{\text {int }}=0.0843\right)$
Data/restraints/parameters	$6879 / 0 / 417$
Goodness-of-fit $(S)[$ all data $]$	1.017
Final $R_{1}\left[F_{\mathrm{o}}^{2} \geq 2 \sigma\left(F_{\mathrm{o}}^{2}\right)\right]$	0.0555
Final $w R_{2}[$ all data	0.1633
Largest diff. peak/hole $/ \mathrm{e} \AA \AA^{-3}$	$0.210 /-0.331$

Supporting Information for

3. Summary of UV-Vis Absorption Properties for 1-3

Table S-4 Summary of maximum absorption wavelengths ($\lambda_{\max }$) and corresponding extinction coefficients (ε) for compounds 1-3 in different solvents

Solvent	1		2		3	
	$\begin{aligned} & \lambda_{\max } \\ & (\mathrm{nm}) \end{aligned}$	$\left(\begin{array}{c} \varepsilon \\ \left(\mathrm{mol}^{-1} \mathrm{~L} \mathrm{~cm}^{-1}\right) \end{array}\right.$	$\begin{aligned} & \lambda_{\max } \\ & (\mathrm{nm}) \end{aligned}$	$\left(\begin{array}{c} \varepsilon \\ \left(\mathrm{mol}^{-1} \mathrm{~L} \mathrm{~cm}^{-1}\right) \end{array}\right.$	$\begin{aligned} & \lambda_{\max } \\ & (\mathrm{nm}) \end{aligned}$	$\left(\begin{array}{c} \varepsilon \\ \left(\mathrm{mol}^{-1} \mathrm{~L} \mathrm{~cm}^{-1}\right) \end{array}\right.$
acetone	384	1.41×10^{4}	384	2.22×10^{4}	380	1.27×10^{4}
	364	1.85×10^{4}	364	2.71×10^{4}	362 (sh)	2.64×10^{4}
	349	1.81×10^{4}	350	2.55×10^{4}	354	3.18×10^{4}
					347	3.18×10^{4}
DMSO	386	1.79×10^{4}	386	2.55×10^{4}	381	1.36×10^{4}
	366	2.01×10^{4}	366	2.71×10^{4}	362 (sh)	2.83×10^{4}
	351	1.71×10^{4}	352	2.37×10^{4}	353	3.20×10^{4}
$\mathrm{CH}_{3} \mathrm{CN}$	383	1.47×10^{4}	382	2.17×10^{4}	380	1.29×10^{4}
	363	1.98×10^{4}	364	2.71×10^{4}	361	2.52×10^{4}
	349	2.00×10^{4}	349	2.58×10^{4}	352	3.16×10^{4}
					347	3.18×10^{4}
EtOH	382	1.52×10^{4}	382	2.15×10^{4}	378	0.98×10^{4}
	363	1.96×10^{4}	363	2.60×10^{4}	359 (sh)	1.95×10^{4}
	348	2.01×10^{4}	348	2.72×10^{4}	349	3.15×10^{4}
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	383	1.14×10^{4}	384	2.05×10^{4}	380	1.16×10^{4}
	363	1.70×10^{4}	364	2.70×10^{4}	362 (sh)	2.73×10^{4}
	348	2.01×10^{4}	350	2.66×10^{4}	354	3.17×10^{4}
toluene	384	0.99×10^{4}	385	2.11×10^{4}	382	1.24×10^{4}
	$365 \text { (sh) }$	1.48×10^{4}	365	2.71×10^{4}	363	2.98×10^{4}
	350	1.92×10^{4}	352	2.55×10^{4}	356	3.18×10^{4}
					348	3.12×10^{4}

4. NMR Analysis on Solvent Effects

The solvent effects on Ph-PyIm 1 were investigated by ${ }^{1} \mathrm{H}$ NMR analysis.

Fig. S-6 Expanded ${ }^{1} \mathrm{H}$ NMR (300 MHz) spectra showing the aromatic region of compound $\mathbf{1}$ measured in different solvents.

Measured in DMSO- d_{6}, the imidazolyl NH and phenolic OH protons of $\mathbf{1}$ are observed at 13.48 ppm and 9.94 ppm in the spectrum. The two phenyl protons ortho to the OH group (labeled as $\mathrm{H}_{1} / \mathrm{H}_{1}{ }^{\prime}$) appear as a pseudo doublet at 7.01 ppm , while phenyl protons $\mathrm{H}_{2} / \mathrm{H}_{2}$ ' and
pyrenyl protons $\mathrm{H}_{4}-\mathrm{H}_{9}$ are overlapped in the region of $8.30-8.09 \mathrm{ppm}$. The two pyrenyl protons H_{3} and H_{10} give rise to a signal at 8.81 ppm , which looks like a "triplet". This signal can be explained as two partially overlapped pseudo doublets, considering the significant splitting effects of H_{3} and H_{10} mainly come from the coupling of H_{4} and H_{9}, respectively. This NMR pattern concurs with the solvation motif \mathbf{A} shown in Scheme $\mathrm{S}-1$. In this solvated structure, proton H_{3} should be slightly more shielded than proton H_{10}, due to the hydrogen bonding interaction with DMSO oxygen atom.

Scheme S-1 Proposed solvent exchange steps for compound 1 in DMSO- d_{6} and CD_{3} OD.

Measured in mixtures of DMSO- d_{6} and $\mathrm{CD}_{3} \mathrm{OD}$, the imidazolyl NH and phenolic OH signals disappear completely as a result of rapid proton/deuterium exchanges with $\mathrm{CD}_{3} \mathrm{OD}$. In the meantime, the imidazolyl $\mathrm{C}=\mathrm{N}$ can form a hydrogen bond with $\mathrm{CD}_{3} \mathrm{OD}$ (structure \mathbf{B} in Scheme S-1). The equilibrium between \mathbf{A} and \mathbf{B} results in the signals of H_{3} and H_{10} being broad and slightly shifted apart (see the spectrum measured in $2: 1 \mathrm{DMSO}-d_{6} / \mathrm{CD}_{3} \mathrm{OD}$). As the amount of $\mathrm{CD}_{3} \mathrm{OD}$ increases, the line shapes of the two signals for H_{3} and H_{10} become narrower and they gradually come closer. Eventually, the H_{3} and H_{10} signals merge into a doublet at 8.77 ppm in $\mathrm{CD}_{3} \mathrm{OD}$.

The NMR changes in Figure S-6 reflect different solvation stages as outlined in Scheme S1. In DMSO- d_{6}, the solvent molecule interacts with $\mathbf{1}$ via hydrogen bonds illustrated in structure A. In the mixtures of DMSO- d_{6} and $\mathrm{CD}_{3} \mathrm{OD}$, the two different solvent molecules compete with one another in hydrogen bonding interactions with $\mathbf{1}$, resulting in equilibration among the three structures $\mathbf{A - C}$. In $\mathrm{CD}_{3} \mathrm{OD}$, the solvent molecules form hydrogen bonds around the imidazolyl unit of $\mathbf{1}$ (structure \mathbf{C} in Scheme $\mathrm{S}-1$), and tautomerization of the imidazolyl group makes the two proton signals $\left(\mathrm{H}_{3}\right.$ and $\left.\mathrm{H}_{10}\right)$ degenerated.

Supporting Information for

Fig. S-7 Expanded ${ }^{1} \mathrm{H}$ NMR (300 MHz) spectrum showing the aromatic region of compound $\mathbf{1}$ measured in DMSO- d_{6}.

[^0]: ${ }^{1}$ (a) Z. A. Tabasi, E. A. Younes, J. C. Walsh, D. W. Thompson, G. J. Bodwell, Y. Zhao, ACS Omega 2018, 3, 16387-16397; (b) Z. A. Tabasi, J. C. Walsh, G. J. Bodwell, D. W. Thompson, Y. Zhao, Cryst. Growth Des. 2020, 20, 1681-1693.

[^1]: ${ }^{2}$ A. T. R. Williams, S. A. Winfield, J. N. Miller, Analyst 1983, 108, 1067-1071.
 ${ }^{3}$ T. R. Schneider, G. M. Sheldrick, Acta Crystallogr. D 2002, 58, 1772-1779.
 ${ }^{4}$ G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3-8.
 ${ }^{5}$ CrystalExplorer (Version 3.1), S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, University of Western Australia, 2012.

