Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Pt-based nanoparticles decorated by phosphorus-doped CuWO₄ to enhance methanol oxidation activity

Taichun Wu, Mengyu Gan*, Li Ma**, ShuangWei, Qinglan Fu, Yanling Yang, TingTing

Li, Fei Xie, Wang Zhan, Xiujuan Zhong

College of Chemistry & Chemical Engineering, Chongqing University, Chongqing,

400044, PR China

Figure. S1. SEM patterns of CuWO₄·2H₂O/C (a), C/P-CuWO₄ (b) and Cu(OH) ₂/C(c), C/P-CuO (d), respectively.

Figure. S2. TEM patterns and mean size of Pt NPs of Pt/C-CuWO₄

Figure. S3 XPS spectraXPS survey spectra of catalysts (a) and Pt 4f spectra of $Pt-C/P-CuWO_4(b)$, $Pt/C-CuWO_4(c)$, Pt-C/P-CuO(d), $Pt-C/P-WO_3(e)$ and Pt/C-H (f), respectively.

	Pt^{0}		Pt ²⁺		Pt ⁴⁺	
samples	Binding	Relative ratio	Binding	Relative	Binding	Relative
	Energy	%	Energy	ratio	Energy	ratio
	(eV)		(eV)	%	(eV)	%
Pt-C/P-CuWO ₄	71.43	70.30	72.67	10.5	75.72	11.2
	74.81		76.51	18.3	78.26	
Pt/C-CuWO ₄	71.32	68.06	72.43	20.6	75.92	11.34
	74.66		76.83		78.52	
Pt-C/P-CuO	71.38	66.08	72.53	23.25	74.80	10.68
	74.69		76.20		77.98	
Pt/C-H	70.96	66.24	72.12	21.39	75.81	12 37
	74.28		75.16		77.22	12.37

Table S1: The fitting results and surface components of the Pt 4f spectra for catalysts.

Figure. S4 Chronoamperometric curves of Pt-C/P@CuWO₄/C, Pt/C-CuWO₄, Pt-C/P-CuO and Pt/C-H catalysts in 0.5 M H_2SO_4 solution at a scan rate of 50 mV s⁻¹ (a), the mass activity and specific activity (b).

(ECSA)				
samples	ECSA	Specific activity	Mass activity	
	$(m^2 \cdot g^{-1}_{Pt})$	(mA·cm ⁻² _{Pt})	(mA·mg ⁻¹ _{Pt})	
Pt-C/P-CuWO ₄	103.28	1.38	1422	
Pt/C-CuWO ₄	73.87	1.34	992	
Pt-C/P-CuO	71.13	1.33	947	
Pt/C-H	59.70	0.57	341	

Table S2: Electro-chemic values in $0.5 \text{ M H}_2\text{SO}_4$ solution of four samples toward electrochemical active surface area (ECSA)

samples	ECSA (m ² ·g ⁻¹ _{Pt})	Mass activity (mA·mg ⁻¹ Pt)	Conditions	References
Pt-C/P-CuWO ₄	103.28	1422	0.5 M H ₂ SO ₄ +1.0 M CH ₃ OH	This work
Pt-WO ₂ /WO ₃	-	694	0.5 M H ₂ SO ₄ +1.0 M CH ₃ OH	1
Pt/Fe ₃ O ₄ -SNG	162.06	1129	0.5 M H ₂ SO ₄ +0.5 M CH ₃ OH	2
Pt/NiCoPx@NCNT-NG	54.2	857	0.5 M H ₂ SO ₄ +0.5 M CH ₃ OH	3
PtPdNiP TOMNs	57.1	1040	0.5 M H ₂ SO ₄ +1.0 M H ₃ OH	4
Pt/TiO ₂ /NDC	36.3	527	0.5 M HClO ₄ +1.0 M CH ₃ OH	5

Table S3: summarized this work and other reported accomplishments in methanol oxidation reaction.

References

- 1. Y. Zhou, X. C. Hu, X. H. Liu and H. R. Wen, *Chemical Communications*, 2015, **51**, 15297-15299.
- J. Zhong, L. Wu, J. Lan, M. Waqas, M. Sun, Y. Fan, W. Chen, L. Liu and J. Yang, *International Journal of Hydrogen Energy*, 2020, 45, 22929-22937.
- J. Ding, W. Hu, L. Ma, M. Gan, F. Xie, W. Zhan and W. Lu, *Journal of Power Sources*, 2021, 481, 228888.
- 4. Q. Zhou, J. Wu, Z. Pan, X. Kong, Z. Cui, D. Wu and G. Hu, *International Journal of Hydrogen Energy*, 2020, **45**, 33634-33640.
- 5. J. Zhang, J. Chen, F. Zhou, X. W. Zeng, A. Xing, B. Jia, B. Y. Fan, J. Wang and X. Y. Liu, *Journal of Electrochemical Energy Conversion and Storage*, 2021, **18**.