Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information

Acetylene Coupler Builds Strong and Tunable Diradical Organic Molecular Magnets

Jiapeng Ma, ^a Yuan Yuan, ^a Baotao Kang ^{a, b,*} and Jin Yong Lee ^{b,*}

^a School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China

E-mail: chm_kangbt@ujn.edu.cn

^b Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea

E-mail: jinylee@skku.edu

Table of contents

- 1. Table S1~S5 are the detailed energy information for PO-PO, NN-NN, PO-NN, NN-IN and IN-IA diradicals under diradical effect.
- 2. Table S6~S10 are the detailed energy information for PO-PO, NN-NN, PO-NN, NN-IN and IN-IA diradicals under bending effect.
- 3. Total spin densities on couplers vs. coupler length.
- 4. Calculated spin densities of NN-(\equiv)*n*-NN, IA-(\equiv)*n*-NN and IA-(\equiv)*n*-IN in the ground spin state.

System	Dihedral	$E_{\rm T}$ (au)	$E_{\rm BS}$ (au)	$I(cm^{-1})$
System	Angle	(S^2)	(S^2)	<i>J</i> (CIII)
	0	-1317.68250911	-1317.69779782	2258 52
	0	(2.0505)	(0.5648)	-2238.32
	10	-1317.68262476	-1317.69746807	0014.00
	10	(2.0509)	(0.5801)	-2214.93
	20	-1317.68283122	-1317.69646061	2002 (0
	20	(2.0521)	(0.6227)	-2092.69
	20	-1317.68303309	-1317.69472868	1076 65
	30	(2.0539)	(0.6861)	-18/6.65
	40	-1317.68350220	-1317.69271546	1575 (9
$\mathbf{DO} = \mathbf{DO}/$	40	(2.0563)	(0.7730)	-15/5.68
r 0 r 0 /	50	-1317.68404536	-1317.69078391	1224 10
	30	(2.0584)	(0.8601)	-1234.19
	60	-1317.68435309	-1317.68880554	872 20
	60	(2.0603)	(0.9412)	-8/3.20
	70	-1317.68445672	-1317.68683923	400.47
	/0	(2.0620)	(1.0151)	-499.4/
	20	-1317.68487561	-1317.68591985	220.16
	80	(2.0631)	(1.0630)	-229.10
	90	-1317.68515712	-1317.68583983	-151.78
		(2.0633)	(1.0761)	
	0	-1393.84253571	-1393.85314007	1772 70
	0	(2.0540)	(0.7411)	-1//2./0
	10	-1393.84267295	-1393.85297653	1724.04
	10	(2.0545)	(0.7510)	-1/34.04
	20	-1393.84293679	-1393.85242747	1630.40
	20	(2.0559)	(0.7784)	-1030.49
	30	-1393.84324239	-1393.85141634	1480 64
PO-(≡) ₂ -PO	30	(2.0580)	(0.8537)	-1409.04
	40	-1393.84383828	-1393.85037021	1216.04
	40	(2.0606)	(0.8817)	-1210.04
	50	-1393.84447369	-1393.84940342	-963 79
	50	(2.0628)	(0.9402)	-903./9
	60	-1393.84485487	-1393.84828690	-705 41
	00	(2.0648)	(0.9970)	-/03.41
	70	-1393.84504503	-1393.84705675	-435 21
	10	(2.0667)	(1.0522)	-733.21

 Table S1. Detailed energy information of PO-PO radicals under diradical effect.

80	-1393.84550106	-1393.84671991	271.88
80	(2.0677)	(1.0838)	-2/1.00
00	-1393.84578371	-1393.84678152	224 59
90	(2.0678)	(1.0927)	-224.38
0	-1470.00265398	-1470.01042174	1421.04
0	(2.0579)	(0.8582)	-1421.04
10	-1470.00278174	-1470.01034192	1200.27
10	(2.0585)	(0.8651)	-1390.37
20	-1470.00301661	-1470.01001221	1205.00
20	(2.0601)	(0.8844)	-1303.90
20	-1470.00328676	-1470.00936938	-1164.90
30	(2.0626)	(0.9166)	
40	-1470.00382520	-1470.00878403	-982.60
	(2.0655)	(0.9579)	
50	-1470.00439790	-1470.00826508	704 55
	(2.0681)	(0.9999)	-794.55
(0)	-1470.00471932	-1470.00755819	
60	(2.0704)	(1.0415)	-605.55
70	-1470.00487830	-1470.00671303	407 10
/0	(2.0726)	(1.0837)	-407.19
0.0	-1470.00529348	-1470.00661176	200.04
80	(2.0736)	(1.1061)	-299.04
00	-1470.00556099	-1470.00673435	2(7.92
90	(2.0739)	(1.1124)	-267.83
	80 90 0 10 20 30 40 50 60 70 80 90	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Sustam	Dihedral	$E_{\rm T}$ (au)	$E_{\rm BS}$ (au)	$I(am^{-1})$
System	Angle	(S^2)	(S^2)	J (CIII)
	0	-1143.75958359	-1143.76294618	-825.05
	0	(2.1109)	(1.2164)	
	10	-1317.68262476	-1317.69746807	-798.36
	10	(2.0509)	(0.5801)	
	20	-1317.68283122	-1317.69646061	-720.69
	20	(2.0521)	(0.6227)	
	20	-1317.68303309	-1317.69472868	-619.89
	30	(2.0539)	(0.6861)	
	40	-1317.68350220	-1317.69271546	-482.44
NN = NN	40	(2.0563)	(0.7730)	
	50	-1317.68404536	-1317.69078391	-358.394
	30	(2.0584)	(0.8601)	
	60	-1317.68435309	-1317.68880554	-245.594
	00	(2.0603)	(0.9412)	
	70	-1317.68445672	-1317.68683923	-155.17
	70	(2.0620)	(1.0151)	
	80	-1317.68487561	-1317.68591985	-96.09
		(2.0631)	(1.0630)	
	00	-1143.76132242	-1143.76167538	-78.68
	90	(2.1505)	(1.0761)	
	0	-1219.91800465	-1219.92029231	-554.35
	0	(2.1367)	(1.2310)	
	10	-1393.84267295	-1393.85297653	-537.61
		(2.0545)	(0.7510)	
	20	-1393.84293679	-1393.85242747	-489.61
	20	(2.0559)	(0.7784)	
	30	-1393.84324239	-1393.85141634	-432.82
MNI (=), MNI/	50	(2.0580)	(0.8537)	
NN-(≡)2-NN/	40	-1393.84383828	-1393.85037021	-340.80
	-10	(2.0606)	(0.8817)	
	50	-1393.84447369	-1393.84940342	-265.56
	50	(2.0628)	(0.9402)	
	60	-1393.84485487	-1393.84828690	-193.80
	00	(2.0648)	(0.9970)	
	70	-1393.84504503	-1393.84705675	-136.53
	/0	(2.0667)	(1.0522)	

 Table S2. Detailed energy information of NN-NN radicals under diradical effect.

	80	-1393.84550106	-1393.84671991	-95.41
	80	(2.0677)	(1.0838)	
	00	-1219.91896373	-1219.91934528	-85.86
	90	(2.1739)	(1.1986)	
	0	-1296.0765836	-1296.07823967	-398.01
	0	(2.1567)	(1.2435)	
	10	-1470.00278174	-1470.01034192	-388.14
	10	(2.0585)	(0.8651)	
	20	-1470.00301661	-1470.01001221	-357.20
	20	(2.0601)	(0.8844)	
	20	-1470.00328676	-1470.00936938	-319.01
	50	(2.0626)	(0.9166)	
	40	-1470.00382520	-1470.00878403	-260.67
		(2.0655)	(0.9579)	
$ININ-(=)_3-ININ$	50	-1470.00439790	-1470.00826508	-209.05
		(2.0681)	(0.9999)	
	60	-1470.00471932	-1470.00755819	-160.03
	00	(2.0704)	(1.0415)	
	70	-1470.00487830	-1470.00671303	-121.42
	70	(2.0726)	(1.0837)	
	20	-1470.00529348	-1470.00661176	-92.91
	80	(2.0736)	(1.1061)	
	00	-1296.07708901	-1296.07746963	-86.28
	90	(2.1891)	(1.2209)	

System	Dihedral	$E_{\rm T}$ (au)	$E_{\rm BS}$ (au)	$I(am^{-1})$
System	Angle	(S^2)	(S^2)	J (CIII)
	0	-1230.73256126	-1230.72327745	1054.20
	0	(2.1094)	(1.0668)	1934.30
	10	-1230.73238710	-1230.72325670	1000 75
	10	(2.1098)	(1.0676)	1922.75
	20	-1230.73176249	-1230.72324262	1706 42
	20	(2.1109)	(1.0700)	1/96.42
	20	-1230.73074566	-1230.72307232	1(21.04
	30	(2.1128)	(1.0739)	1621.04
	40	-1230.72941905	-1230.72299575	12(1.15
NN = DO	40	(2.1149)	(1.0792)	1361.15
ININ-=-PO	50	-1230.72791236	-1230.72288246	1070 22
	50	(2.1169)	(1.0854)	1070.22
	(0	-1230.72649992	-1230.72298814	750 70
	60	(2.1188)	(1.0921)	/50.70
	70	-1230.72508099	-1230.72304402	437.65
	/0	(2.1194)	(1.0979)	
	00	-1230.72415270	-1230.72314180	218.05
	80	(2.1199)	(1.1024)	
	90	-1230.72372066	-1230.72318319	116.16
		(2.1203)	(1.1048)	
	0	-1306.887375	-1306.880919	1241 52
	0	(2.1402)	(1.0840)	1341.52
	10	-1306.887288	-1306.880944	1210 (7
	10	(2.1406)	(1.0847)	1318.07
	20	-1306.886972	-1306.881076	1007.00
	20	(2.1413)	(1.0874)	1227.82
	20	-1306.886420	-1306.881184	1002 50
	30	(2.1426)	(1.0916)	1093.30
NN-(≡)2-PO	40	-1306.885720	-1306.881299	026 41
	40	(2.1442)	(1.0968)	926.41
	50	-1306.884933	-1306.881404	742 40
	30	(2.1457)	(1.1025)	/42.40
	60	-1306.884236	-1306.881766	500 17
	ου	(2.1470)	(1.1089)	322.17
	70	-1306.883513	-1306.881958	220.05
	/0	(2.1476)	(1.1138)	330.05

 Table S3. Detailed energy information of PO-NN radicals under diradical effect.

G . (Dihedral	$E_{\rm T}$ (au)	$E_{\rm BS}$ (au)	I (-1)
System	Angle	(S^2)	(S^2)	$J(\mathrm{cm}^{-1})$
	00	-1306.883049	-1306.882110	200.05
	80	(2.1480)	(1.1178)	200.03
	00	-1306.882852	-1306.882185	142 45
	90	(2.1484)	(1.1197)	142.43
	0	-1383.044653	-1383.039957	064.61
	0	(2.1673)	(1.0989)	904.01
	10	-1383.044604	-1383.039990	048.38
	10	(2.1663)	(1.0997)	940.30
	20	-1383.044426	-1383.040139	882.97
	20	(2.1680)	(1.1023)	
	30	-1383.044087	-1383.040278	786.62
		(2.1688)	(1.1062)	
	40	-1383.043653	-1383.040421	670.06
		(2.1698)	(1.1111)	
ININ-(=)3-PO	50	-1383.043165	-1383.040565	541.25
	30	(2.1709)	(1.1168)	
	60	-1383.042787	-1383.040868	401 17
	00	(2.1718)	(1.1219)	401.17
	70	-1383.042355	-1383.041069	270 16
	70	(2.1720)	(1.1268)	270.10
	80	-1383.042080	-1383.041177	100.08
	80	(2.1723)	(1.1298)	190.08
	00	-1383.041969	-1383.041241	152 16
	90	(2.1726)	(1.1316)	155.46

System	Dihedral	$E_{\rm T}$ (au)	$E_{\rm BS}$ (au)	$I(am^{-1})$
System	Angle	(S^2)	(S^2)	J (CIII)
	0	-1397.94284074	-1397.93999065	509.20
	0	(2.1184)	(1.0729)	598.29
	10	-1397.94269194	-1397.93992097	582.19
	10	(2.1178)	(1.0732)	
	20	-1397.94229423	-1397.93974163	527.00
	20	(2.1158)	(1.0743)	537.90
	20	-1397.94169572	-1397.93948803	16751
	30	(2.1131)	(1.0767)	407.51
	40	-1397.94096721	-1397.93916770	202.02
$\mathbf{I}\mathbf{A} = \mathbf{N}\mathbf{N}\mathbf{I}$	40	(2.1097)	(1.0786)	383.03
IA-=-ININ	50	-1397.94028587	-1397.93895773	201 57
	50	(2.1058)	(1.0815)	284.57
	(0)	-1397.93953560	-1397.93866566	197 (2
	60	(2.1021)	(1.0845)	187.62
	70	-1397.93897511	-1397.93845498	112.76
	/0	(2.0991)	(1.0868)	
	80	-1397.93869022	-1397.93841115	(0, 7)
		(2.0971)	(1.0891)	00.70
	90	-1397.93857168	-1397.93837644	42.53
		(2.0965)	(1.0890)	
	0	-1474.09814317	-1474.09616513	414.681
		(2.1349)	(1.0880)	
	10	-1474.09812900	-1474.09620934	402 00
		(2.1342)	(1.0887)	402.98
	20	-1474.09793978	-1474.09616597	272.22
	20	(2.1329)	(1.0898)	3/3.22
	20	-1474.09771421	-1474.09616930	226.46
IA-(≡) ₂ -	30	(2.1306)	(1.0920)	320.40
NN	40	-1474.09747767	-1474.09622644	765.04
	40	(2.1277)	(1.0947)	203.84
	50	-1474.09714272	-1474.09618769	204.02
	30	(2.1244)	(1.0971)	204.03
	(0)	-1474.09693454	-1474.09625290	146.40
	00	(2.1217)	(1.1000)	140.42
	70	-1474.09669572	-1474.09625975	04.07
	/0	(2.1195)	(1.1024)	94.07

 Table S4. Detailed energy information of IA-NN radicals under diradical effect.

	80	-1474.09657410	-1474.09628622	62 31	
	80	(2.1179)	(1.1039)	02.51	
	00	-1474.09650834	-1474.09627000	51 (2)	
	90	(2.1175)	(1.1043)	51.02	
	0	-1550.25587131	-1550.25442624	202 65	
	0	(2.1474)	(1.0995)	302.03	
	10	-1550.25588295	-1550.25447945	204 22	
	10	(2.1467)	(1.0998)	294.23	
	20	-1550.25577638	-1550.25447269	272.02	
	20	(2.1458)	(1.1013)	213.93	
	20	-1550.25567197	-1550.25452917	241.12	
	30	(2.1438)	(1.1036)		
	40	-1550.25557644	-1550.25463546	199.47	
IA-(≡) ₃ -	40	(2.1413)	(1.1060)		
NN	50	-1550.25540776	-1550.25468047	154.94	
	30	(2.1391)	(1.1089)		
	60	-1550.25523922	-1550.25469900	115 61	
	00	(2.1367)	(1.1112)	115.01	
	70	-1550.25514203	-1550.25474802	94 62	
	70	(2.1346)	(1.1128)	84.05	
	80	-1550.25512959	-1550.25484042	62.26	
	00	(2.1334)	(1.1141)	02.20	
	00	-1550.25507950	-1550.25482318	55 72	
	90	(2.1333)	(1.1148)	55.23	

System	Dihedral	$E_{\rm T}$ (au)	$E_{\rm BS}$ (au)	$I(am^{-1})$
System	Angle	(S^2)	(S^2)	J (CIII)
	0	-1322.77065350	-1322.76964083	217 22
	0	(2.0486)	(1.0255)	217.23
	10	-1322.77049431	-1322.76960009	101.00
	10	(2.0482)	(1.0255)	191.90
	20	-1322.77018029	-1322.76934251	100.01
	20	(2.0476)	(1.0262)	180.01
	20	-1322.76976248	-1322.76903483	156 70
	30	(2.0463)	(1.0273)	156.72
	40	-1322.76934867	-1322.76874763	120.94
IA-≡-IN	40	(2.0448)	(1.0289)	129.84
	50	-1322.76884296	-1322.76839205	07.74
	50	(2.0431)	(1.0306)	97.74
	(0)	-1322.76834685	-1322.76802490	70.00
	60	(2.0415)	(1.0322)	/0.00
	70	-1322.76798063	-1322.76776853	16.04
	70	(2.0403)	(1.0337)	46.24
	80	-1322.76777149	-1322.76763754	20.26
		(2.0394)	(1.0347)	29.26
	90	-1322.76771322	-1322.76760397	23.88
		(2.0391)	(1.0351)	
	0	-1398.92587799	-1398.92523053	120.05
		(2.0537)	(1.0318)	139.03
	10	-1398.92593652	-1398.92530842	124.07
		(2.0533)	(1.0320)	134.97
	20	-1398.92575262	-1398.92516666	126.06
	20	(2.0528)	(1.0327)	120.00
	20	-1398.92559993	-1398.92509140	100.62
IA-(≡)2-IN	30	(2.0516)	(1.0335)	109.02
	40	-1398.92548031	-1398.92504865	02 27
	40	(2.0506)	(1.0349)	93.27
	50	-1398.92529972	-1398.92496655	72 19
	30	(2.0491)	(1.0361)	/2.10
	60	-1398.92509820	-1398.92484667	54 62
	00	(2.0480)	(1.0376)	54.05
	70	-1398.92496868	-1398.92479422	37 08
	/0	(2.0469)	(1.0389)	37.98

 Table S5. Detailed energy information of IA-IN radicals under diradical effect.

	90	-1398.92488370	-1398.92475386	28.21
	80	(2.0462)	(1.0397)	28.31
	00	-1398.92489194	-1398.92477731	25.00
	90	(2.0460)	(1.0399)	25.00
	0	-1475.08357597	-1475.08309786	100 50
	0	(2.0578)	(1.0367)	102.76
	10	-1475.08361154	-1475.08314695	00.00
	10	(2.0574)	(1.0367)	99.89
	20	-1475.08348389	-1475.08304920	02 57
	20	(2.0569)	(1.0374)	93.57
	20	-1475.08343199	-1475.08305013	82.34
	30	(2.0560)	(1.0382)	
	40	-1475.08334164	-1475.08301015	71.60
IA-(≡)3-IN	40	(2.0552)	(1.0392)	
	50	-1475.08325210	-1475.08298716	57.36
	50	(2.0539)	(1.0403)	
	(0)	-1475.08314527	-1475.08293827	44.01
	60	(2.0530)	(1.0415)	44.91
	-	-1475.08311942	-1475.08296579	22.20
	/0	(2.0521)	(1.0425)	33.39
	0.0	-1475.08308579	-1475.08296198	26.04
	80	(2.0516)	(1.0431)	26.94
	0.0	-1475.08309427	-1475.08298117	24.62
	90	(2.0514)	(1.0434)	24.62
		× /	× /	

Diradicals/	Bending	$E_{\rm T}$ (au)	$E_{\rm BS}$ (au)	$I(am^{-1})$
Dihedral Angle	Angle	(S^2)	(S^2)	<i>J</i> (cm)
	1400	-1317.66326753	-1317.67879444	2202 54
	140	(2.0500)	(0.5700)	-2302.34
	1500	-1317.67155300	-1317.68704356	2286 70
	150	(2.0502)	(0.5635)	-2200.79
$\mathbf{PO} = \mathbf{PO}$	160°	-1317.67698804	-1317.69238312	2272 30
r0-=-r0	100	(2.0503)	(0.5634)	-2212.39
	170°	-1317.68143010	-1317.69669825	2257.00
	170	(2.0505)	(0.5658)	-2237.00
	1800	-1317.68250911	-1317.69779782	2258 52
	160	(2.0505)	(0.5648)	-2238.32
	1400	-1393.82923938	-1393.83942810	1724 22
	140	(2.0559)	(0.7590)	-1/24.23
	150°	-1393.83475073	-1393.84512506	1746 80
		(2.0549)	(0.7515)	-1/40.09
$\mathbf{DO}(-)$, $\mathbf{DO}(-)$	160°	-1393.83913467	-1393.84966269	1762 07
PO-(=)2-PO		(2.0543)	(0.7444)	-1/03.97
	170°	-1393.84180114	-1393.85239613	1771 68
		(2.0540)	(0.7415)	-1//1.08
	180°	-1393.84253571	-1393.85314007	1772 70
		(2.0540)	(0.7411)	-1//2.70
	1400	-1469.99227884	-1470.00002472	1410 762
	140	(2.0583)	(0.8609)	-1419.702
	1500	-1469.99657039	-1470.00433466	1421 50
	150	(2.0581)	(0.8594)	-1421.39
PO-(≡) ₃ -PO	1600	-1470.00011365	-1470.00787901	1420.84
	100	(2.0580)	(0.8585)	-1420.04
	1700	-1470.00182522	-1470.00958892	1420.65
	170	(2.0580)	(0.8586)	-1420.03
	1800	-1470.00265398	-1470.01042174	1421.04
	180°	(2.0579)	(0.8582)	-1421.04

 Table S6. Detailed energy information of PO-PO diradicals under bending effect.

Diradicals/	Bending	$E_{\rm T}$ (au)	$E_{\rm BS}$ (au)	$I(am^{-1})$
Dihedral Angle	Angle	(S^2)	(S^2)	<i>J</i> (CIII)
	1400	-1143.74548457	-1143.74906889	904.05
	140	(2.1129)	(1.2339)	-894.93
	1500	-1143.75108650	-1143.75456827	067 70
	130	(2.1119)	(1.2258)	-802.38
	1600	-1143.75896823	-1143.76232662	072 55
ININ-=- ININ	100	(2.1109)	(1.2159)	-825.55
	1700	-1143.75851756	-1143.76187313	277 77
	170	(2.1109)	(1.2158)	-822.11
	1000	-1143.75958359	-1143.76294618	825 04
	180	(2.1109)	(1.2164)	-823.04
	1400	-1219.90922419	-1219.91136249	517 20
	140	(2.1394)	(1.2232)	-317.30
	1500	-1219.91305834	-1219.91531612	546 60
	150	(2.1381)	(1.2317)	-340.09
	1600	-1219.91596454	-1219.91824291	552 04
$\ln(1) = (2 - 1) \ln(1)$	100	(2.1371)	(1.2313)	-332.04
	170°	-1219.91768996	-1219.91997670	554.07
		(2.1367)	(1.2309)	-334.07
	1800	-1219.91800465	-1219.92029231	554 35
	160	(2.1367)	(1.2310)	-334.33
	1400	-1296.06814106	-1296.06979656	208 48
	140	(2.1571)	(1.2453)	-370.40
	1 5 0°	-1296.07181888	-1296.07347502	308 33
NN-(≡)3-NN/	150	(2.1569)	(1.2444)	-370.33
	160°	-1296.07456462	-1296.07621822	-307 /1
	100	(2.1567)	(1.2435)	-377.41
	1 7 0°	-1296.07608510	-1296.07773980	-397 64
	170	(2.1567)	(1.2434)	<i>571</i> .07
	180°	-1296.07658360	-1296.07823967	-398 01
	100	(2.1567)	(1.2435)	-570.01

 Table S7. Detailed energy information of NN-NN diradicals under bending effect.

Diradicals	Bending	$E_{\rm T}$ (au)	$E_{\rm BS}$ (au)	$J(\mathrm{cm}^{-1})$	
	Angle	(S^2)	(S^2)		
NN-≡-PO	140°	-1230.72377822	-1230.71497736	1851.22	
		(2.1104)	(1.0670)		
	150°	-1230.72790335	-1230.71886996	1001 22	
		(2.1097)	(1.0669)	1901.22	
	160°	-1230.73053246	-1230.72136389	1930.04	
		(2.1094)	(1.0668)		
	170°	-1230.73205606	-1230.72280818	1946.74	
		(2.1094)	(1.0668)		
	1800	-1230.73256126	-1230.72327745	1954.30	
	180-	(2.1094)	(1.0668)		
	140°	-1306.87781693	-1306.87150615	1210 (1	
		(2.1424)	(1.0856)	1310.01	
	150°	-1306.88178107	-1306.87540299	1324.59	
NN–(≡)2–PO		(2.1416)	(1.0848)		
	160°	-1306.88495596	-1306.87852149	1336.68	
		(2.1408)	(1.0843)		
	170°	-1306.88686101	-1306.88041594	1339.26	
		(2.1402)	(1.0840)		
	180°	-1306.88737534	-1306.88091939	1341.52	
		(2.1402)	(1.0840)		
	140°	-1383.03682277	-1383.03210837	966.54	
		(2.1700)	(1.0995)		
NN–(≡)3–PO	150°	-1383.03897445	-1383.03427561	964.07	
		(2.1687)	(1.0990)		
	160°	-1383.04195790	-1383.03726971	962.52	
		(2.1680)	(1.0990)		
	170°	-1383.04398146	-1383.03929253	963.39	
		(2.1678)	(1.0996)		
	180°	-1383.04465287	-1383.03995715	964.61	
		(2.1673)	(1.0989)		

 Table S8. Detailed energy information of NN-PO diradicals under bending effect.

Diradicals	Bending	$E_{\rm T}$ (au)	$E_{\rm BS}$ (au)	$I(cm^{-1})$
Diradicals	Angle	(S^2)	(S^2)	J (CIII)
IN-≕-NN	1409	-1397.93348605	-1397.93072459	580.08
	140*	(2.1159)	(1.0711)	
	1509	-1397.93739688	-1397.93461567	583.89
	130-	(2.1179)	(1.0725)	
	160°	-1397.94076873	-1397.93796796	588.17
		(2.1174)	(1.0723)	
	1700	-1397.94220571	-1397.93935556	598.25
	170	(2.1182)	(1.0726)	
	1800	-1397.94284074	-1397.93999065	598.29
	180	(2.1184)	(1.0729)	
	1400	-1474.08776015	-1474.08585441	399.56
	140	(2.1366)	(1.0898)	
IN–(≡)2–NN	150°	-1474.09225124	-1474.09030499	407.97
	150	(2.1358)	(1.0888)	
	160°	-1474.09548170	-1474.09350966	413.38
	100	(2.1353)	(1.0883)	
	170°	-1474.09752478	-1474.09554901	414.20
	170	(2.1348)	(1.0879)	
	180°	-1474.09814317	-1474.09616513	414 68
	100	(2.1349)	(1.0880)	717.00
IN–(≡)3–NN	140°	-1550.24717698	-1550.24572697	303.23
	140	(2.1490)	(1.0995)	
	150°	-1550.25103681	-1550.24958788	303.17
		(2.1484)	(1.0995)	
	160°	-1550.25390575	-1550.25245766	303.17
		(2.1478)	(1.0995)	
	170°	-1550.25545071	-1550.25400691	302.33
		(2.1472)	(1.0991)	
	180°	-1550.25587131	-1550.25442624	302.65
		(2.1474)	(1.0995)	

 Table S9. Detailed energy information of NN-IA diradicals under bending effect.

Diradicals	Bending	$E_{\rm T}$ (au)	$E_{\rm BS}$ (au)	$I(am^{-1})$	
	Angle	(S^2)	(S^2)	J (cm)	
IN-=-IA	140°	-1322.76020573	-1322.75930868		
		(2.0481)	(1.0246)	192.35	
	150°	-1322.76630280	-1322.76540324		
		(2.0480)	(1.0247)	192.93	
	160°	-1322.76834237	-1322.76743198		
		(2.0483)	(1.0250)	195.25	
	170°	-1322.77004688	-1322.76912958		
		(2.0485)	(1.0252)	196.74	
	180°	-1322.77065350	-1322.76964083		
IN–(≡)2–IA		(2.0486)	(1.0255)	217.23	
	140°	-1398.91542576	-1398.91480168		
		(2.0537)	(1.0320)	134.06	
	150°	-1398.92034396	-1398.91970942		
		(2.0538)	(1.0320)	136.29	
	160°	-1398.92341728	-1398.92277449		
		(2.0537)	(1.0319)	138.06	
	170°	-1398.92539346	-1398.92474777		
		(2.0537)	(1.0318)	138.67	
	180°	-1398.92587799	-1398.92523053		
		(2.0537)	(1.0318)	139.05	
IN–(≡)3–IA	140°	-1475.07531934	-1475.07484840		
		(2.0580)	(1.0368)	101.21	
	150°	-1475.07751310	-1475.07703792		
		(2.0579)	(1.0367)	102.12	
	160°	-1475.07900518	-1475.07853017		
		(2.0579)	(1.0367)	102.08	
	170°	-1475.08310716	-1475.08263164		
		(2.0576)	(1.0366)	102.21	
	180°	-1475.08357597	-1475.08309786		
		(2.0578)	(1.0367)	102.76	

 Table S10. Detailed energy information of IN-IA diradicals under bending effect.

Fig. S1 Calculated spin densities of NN- $(\equiv)_n$ -NN, IA- $(\equiv)_n$ -NN and IA- $(\equiv)_n$ -IN in the ground spin state.

Fig. S2 Calculated spin densities of all OMMs in the ground spin state at perpendicular configurations.