## Pyran Based Bipodal D- $\pi$ -A Systems: Colorimetric and Ratiometric Sensing of Mercury; Experimental and Theoretical Approach

Pookalavan Karicherry Vineetha<sup>a</sup>, Aravind Krishnan<sup>b</sup>, Ajayakumar Aswathy<sup>a</sup>, Parvathy O Chandrasekaran<sup>a</sup>, Narayanapillai Manoj<sup>a</sup>\*



**Supporting Information** 

**Figure S1** Ratiometric plot of absorbance changes at 385 nm and 474 nm for CAPBA and determination lowest limit of detection by linear fit analysis. a) A plot of absorbance ratio  $(A_{385}/A_{474})$  of CAPBA *vs* concentrations of Hg<sup>2+</sup> ions in MeCN and (b) A plot of absorbance ratio  $(A_{340}/A_{489})$  of CAPTBA *vs* concentrations of Hg<sup>2+</sup> ions in MeCN.



**Figure S2:** Determination of lowest limit of detection by linear fit analysis. (a) A plot of the emission intensity at 612 nm of CAPBA *vs* concentration of the  $Hg^{2+}$  ions (b) A plot the emission intensity at 624 nm *vs* concentrations of  $Hg^{2+}$  in MeCN.



**Figure S3:** Ratiometric plot of fluorescence changes at 465 nm and 624 nm (I<sub>465</sub>/I<sub>624</sub>) of CAPTBA *vs* concentrations of Hg<sup>2+</sup> ions in MeCN ( $\lambda_{ex} = 419$  nm) and determination lowest limit of detection by linear fit analysis.



**Figure S4:** Fluorescence decay-profiles of (a) CAPBA and CAPBA - Hg<sup>2+</sup> ion complex ( $\lambda_{em}$ =602 nm) (b) CAPTBA and CAPTBA - Hg<sup>2+</sup> ion complex ( $\lambda_{em}$ = 643 nm);  $\lambda_{ex}$  = 510 nm.



**Figure S5**: Stern-Volmer plot for fluorescence quenching obtained for (a) CAPBA (7.8  $\mu$ M) and (b) CAPTBA (6.2  $\mu$ M) in the presence of increasing concentration of an aqueous solution of Hg<sup>2+</sup> ions in MeCN (0–15.0  $\mu$ M) solution



**Figure S6:** Job plot analysis of CAPBA and CAPTBA with Hg<sup>2+</sup> ions showing a 1:2 binding stoichiometry in MeCN solution.



**Figure S7**: Determination of association constant by nonlinear least square fit analysis. A plot of (a) absorbance ratio of CAPBA ( $A_{385}/A_{474}$ ) *vs* concentrations of Hg<sup>2+</sup> ions in MeCN and (b) absorbance ratio of CAPTBA ( $A_{340}/A_{489}$ ) *vs* concentrations of Hg<sup>2+</sup> ions in MeCN.



**Figure S8**: Reversibility of complexation: (a) Absorption spectra of CAPTBA, CAPTBA– $Hg^{2+}$  ion complex and (b) emission spectra of CAPTBA– $Hg^{2+}$  ion complex in the presence of cysteamine hydrochloride in MeCN;  $\lambda_{ex} = 419$  nm.



**Figure S9**: <sup>1</sup>H-NMR spectra of CAPTBA and CAPTBA in the presence of 0-2 equivalents of Hg<sup>2+</sup> acetate (400 MHz, THF-*d*<sub>8</sub>).



Figure S10. Selected geometrical parameters of the DFT optimized structures of the complexes in MeCN.



Figure S11. Frontier molecular orbitals of CAPTBA (CAMB3LYP).



Figure S12. Frontier molecular orbitals of CAPTBA-Hg<sup>2+</sup> ion complex (CAMB3LYP).

| Table S | Lowest | limit o | f detec | ction of | obtained | by | various | methods |
|---------|--------|---------|---------|----------|----------|----|---------|---------|
|---------|--------|---------|---------|----------|----------|----|---------|---------|

| Probe  | Ratiometry (UV) | Colorimerty | Fluorimetry |
|--------|-----------------|-------------|-------------|
| САРВА  | 4.2 μM          | 3.3 μM      | 4.76 nM     |
|        | (±0.04)         | (±0.08)     | (±0.02)     |
| САРТВА | 2.6 μM          | 1.2 μM      | 1.80 nM     |
|        | (±0.03)         | (±0.04)     | (±0.06)     |



 Table S2 Fragment ions observed in MALDI-TOF mass spectrum of CAPBA.

| Dye                                    | $\begin{array}{l} \lambda_{abs},(nm)\\ (\epsilon_{max} \;x\; 10^4)\\ MeCN \end{array}$ | $\lambda_{abs}$ , (nm),<br>B3LYP<br>(f)<br>MeCN | Transitions   | $\lambda_{abs}$ , (nm),<br>CAMB3LYP<br>(f)<br>MeCN | Transitions   |
|----------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------|---------------|----------------------------------------------------|---------------|
| САРВА                                  | 474 (5.82±0.1)                                                                         | 546 (0.91)                                      | HOMO LUMO     | 553 (1.91)                                         | HOMO LUMO     |
|                                        | 335(2.64±0.1)                                                                          | 486 (0.56)                                      | HOMO-1 LUMO   | 390 (1.07)                                         | HOMO-1 LUMO   |
|                                        |                                                                                        | 382 (0.72)                                      | HOMO → LUMO+1 | 345 (0.01)                                         | HOMO → LUMO+1 |
| CAPBA-<br>Hg <sup>2+</sup><br>complex  | 474                                                                                    | 560 (1.84)                                      | HOMO 🗕 LUMO   | 531 (2.23)                                         | HOMO LUMO     |
|                                        | 340                                                                                    | 522 (0.88)                                      | HOMO-1 LUMO   | 442 (1.04)                                         | HOMO-1 LUMO   |
|                                        |                                                                                        | 444 (0.15)                                      | HOMO → LUMO+1 | 357 (0.04)                                         | HOMO → LUMO+1 |
| САРТВА                                 | 489 (7.72±0.1)<br>340 (3.10±0.1)                                                       | 571 (0.89)                                      | HOMO LUMO     | 520 (2.26)                                         | HOMO 🔶 LUMO   |
|                                        |                                                                                        | 507 (0.67)                                      | HOMO-1 b LUMO | 437 (1.07)                                         | HOMO-1 LUMO   |
|                                        |                                                                                        | 427 (0.24)                                      | HOMO → LUMO+1 | 352 (0.03)                                         | HOMO → LUMO+1 |
| CAPTBA-<br>Hg <sup>2+</sup><br>complex | 498<br>340                                                                             | 579 (1.87)                                      | HOMO LUMO     | 522 (1.98)                                         | HOMO LUMO     |
|                                        |                                                                                        | 542 (0.95)                                      | HOMO-1 LUMO   | 420 (1.39)                                         | HOMO-1 LUMO   |
|                                        |                                                                                        | 482 (0.03)                                      | HOMO → LUMO+1 | 351 (0.03)                                         | HOMO → LUMO+1 |

Table S3. Comparison of experimental and theoretical absorption spectra