Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

New Journal of Chemistry

Supplementary Information for

Effects of transition metal cations and temperature on luminescence of 3-cyano-4-dicyanomethylene-5-oxo-4,5-dihydro-1*H*-pyrrole-2-olate anion

Stanislav I. Gurskiy,^a Sergey S. Maklakov,^b Natalia E. Dmitrieva^c and Viktor A. Tafeenko^c

^aMoscow State University of Civil Engineering, Yaroslavskoye Shosse, 26, 129337, Moscow, Russia.

^bInstitute for Theoretical and Applied Electromagnetics RAS (ITAE RAS), Izhorskaya St., 13, 125412, Moscow, Russia.

^cChemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1, Building 3, GSP-1, 119991, Moscow, Russia.

Fig. S1 Walls (marked with green and pink), which are built of $[Mn(HA)_2(H_2O)_4]_n$ infinite rods, in the crystal structure of complex $[Mn(HA)_2(H_2O)_4] \cdot 2H_2O(1)$. Water solvent molecules (marked with black) are located between the walls. π - π -Stacking interactions are depicted as dotted lines.

Fig. S2 Photoluminescence spectra recorded during repeated heating (up to 122-125 °C) and cooling (down to 27 °C) cycles of ashless cellulose filter paper saturated with Mn(HA)₂ ($2.9 \cdot 10^{-3}$ mol/L) water solution. Excitation wavelength is 365 nm. Paper temperatures are: (1) 27 °C, (2) 125 °C, (3) 27 °C, (4) 123 °C, (5) 27 °C, (6) 123 °C, (7) 27 °C, (8) 122 °C, (9) 27 °C.

Fig. S3 Photoluminescence of ashless cellulose filter paper saturated with $Zn(HA)_2$ (1.1·10⁻³ mol/L) water solution (excitation wavelength is 365 nm):

(a) Spectra recorded during repeated heating (up to 122-124 °C) and cooling (down to 27-28 °C) cycles. Paper temperatures are: (1) 27 °C, (2) 124 °C, (3) 28 °C, (4) 122 °C, (5) 28 °C, (6) 123 °C, (7) 27 °C, (8) 119 °C, (9) 27 °C;

(b) Reversible switching of photoluminescence intensity at 532 nm by repeated heating (up to 119-124 $^{\circ}$ C) and cooling (down to 27-28 $^{\circ}$ C) cycles.

Fig. S4 Photoluminescence spectra of salts $M(HA)_2$ (M = Mn, Zn), DMA⁺_HA⁻ (DMA⁺ = *N*,*N*-dimethylanilinium cation) dissolved in water. Excitation wavelength is 365 nm. Concentration of $M(HA)_2$ in solution is $2.9 \cdot 10^{-4}$ mol/L (M = Mn), $1.1 \cdot 10^{-4}$ mol/L (M = Zn). Concentration of DMA⁺_HA⁻ in solution is $2.9 \cdot 10^{-4}$ mol/L.

Fig. S5 Photoluminescence of ashless cellulose filter paper saturated with DMA⁺_HA⁻ ($2.9 \cdot 10^{-3}$ mol/L) water solution (excitation wavelength is 365 nm):

(a) Spectra recorded during repeated heating (up to 120-124 °C) and cooling (down to 27-28 °C) cycles. Paper temperatures are: (1) 27 °C, (2) 120 °C, (3) 27 °C, (4) 123 °C, (5) 28 °C, (6) 124 °C, (7) 28 °C, (8) 124 °C, (9) 27 °C;

(b) Reversible switching of the emission intensity at 531 nm by repeated heating (up to 120-124 $^{\circ}$ C) and cooling (down to 27-28 $^{\circ}$ C) cycles.

Fig. S6 Photoluminescence of ashless cellulose filter paper saturated with Rhodamine 6G ($6.1 \cdot 10^{-5}$ mol/L) water solution (excitation wavelength is 365 nm):

(a) Spectra recorded during repeated heating (up to 119-126 °C) and cooling (down to 27-28 °C) cycles. Paper temperatures are: (1) 28 °C, (2) 120 °C, (3) 27 °C, (4) 119 °C, (5) 28 °C, (6) 126 °C, (7) 28 °C, (8) 124 °C, (9) 27 °C;

(b) Reversible switching of the emission intensity at 562 nm by repeated heating (up to 119-126 $^{\circ}$ C) and cooling (down to 27-28 $^{\circ}$ C) cycles.

Fig. S7 Photoluminescence of ashless cellulose filter paper saturated with $Cu(HA)_2 (1.5 \cdot 10^{-3} \text{ mol/L})$ water solution (excitation wavelength is 365 nm):

(a) Spectra recorded during repeated heating (up to 119-123 °C) and cooling (down to 27-28 °C) cycles. Paper temperatures are: (1) 27 °C, (2) 121 °C, (3) 28 °C, (4) 123 °C, (5) 27 °C, (6) 119 °C, (7) 27 °C, (8) 121 °C, (9) 27 °C;

(b) Reversible switching of the emission intensity at 534 nm by repeated heating (up to 119-123 $^{\circ}$ C) and cooling (down to 27-28 $^{\circ}$ C) cycles.

Fig. S8 Photoluminescence of ashless cellulose filter paper saturated with $Cd(HA)_2$ (3.0·10⁻³ mol/L) water solution (excitation wavelength is 365 nm):

(a) Spectra recorded during repeated heating (up to 122-124 °C) and cooling (down to 27-28 °C) cycles. Paper temperatures are: (1) 27 °C, (2) 121 °C, (3) 28 °C, (4) 123 °C, (5) 27 °C, (6) 119 °C, (7) 27 °C, (8) 121 °C, (9) 27 °C.

(b) Reversible switching of the emission intensity at 534 nm by repeated heating (up to 119-123 °C) and cooling (down to 27-28 °C) cycles.

Fig. S9 Photoluminescence of salt Cu(HA)₂ adsorbed on ashless cellulose filter paper from water solution (excitation wavelength is 365 nm). Concentration of Cu(HA)₂ in water solution was $1.5 \cdot 10^{-3}$ mol/L. Paper temperatures are:

(a) 27 °C (before heating);

- (b) 123 °C (during heating);
- (c) 27 °C (after cooling).

b)

c)

a)

Fig. S10 Photoluminescence spectra recorded during repeated heating (up to 119-126 °C) and cooling (down to 27-28 °C) cycles of ashless cellulose filter paper. Excitation wavelength is 365 nm. Paper temperatures are: (1) 27 °C, (2) 120 °C, (3) 27 °C, (4) 120 °C, (5) 27 °C, (6) 122 °C, (7) 27 °C, (8) 120 °C, (9) 27 °C.

Complex №	1	2		
Chemical formula	$[Mn(C_8HN_4O_2)_2(H_2O)_4] \cdot 2H_2O$	$[Zn(C_8HN_4O_2)_2(H_2O)_4]$		
Formula weight	533.29	507.69		
Temperature/K	295(2)	295(2)		
Wavelength/Å	1.54184	0.71054		
Crystal system	Triclinic	Triclinic		
Space group	P1	PĪ		
a/Å	6.963(2)	7.0540(6)		
b/Å	8.5910(10)	7.9485(6)		
c/Å	10.532(2)	9.4149(7)		
α/°	105.20(2)	90.829(6)		
β'°	97.89(2)	110.004(6)		
γ/°	109.80(2)	93.622(6)		
$V/Å^3$	554.0(2)	494.68(7)		
Ζ	1	1		
Calculated density/mg·m ⁻³	1.598	1.704		
Absorption coefficient/mm ⁻¹	5.500	1.307		
<i>F</i> (000)	271	256		
Reflections measured	2257	5028		
Independent reflections	2130	2120		
R _{int}	0.0356 0.0933			
Refinement method	Full-matrix least-squares on F^2			
Data/restraints/parameters	2130/0/189	2120/0/167		
Goodness-of-fit on F^2	1.076	0.973		
$R^{a}[I > 2\sigma(I)]$	0.0389	0.0616		
$wR(F^2)^{b}$ (all reflections)	0.1053	0.1685		
$\Delta ho_{ m max}, \Delta ho_{ m min}/{ m e} \cdot { m \AA}^{-3}$	0.324, -0.667	1.116, -0.502		
^a R = $\Sigma F_{o} - F_{c} / \Sigma F_{o} $. ^b wR(F ²) = $[\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$.				

Table S1 Crystallographic data and structure refinement results for complexes $[Mn(HA)_2(H_2O)_4] \cdot 2H_2O$ (1) and $[Zn(HA)_2(H_2O)_4]$ (2).

Table S2Selected bond lengths [Å] and angles [°] for complexes $[Mn(HA)_2(H_2O)_4] \cdot 2H_2O$ (1) and $[Zn(HA)_2(H_2O)_4]$ (2).

Coordination polyhedron	Bond length		Bond angles		
1					
O4 O4 O3 N2 O4 O4 O4 O4	Mn-O3	2.161(2)	O3-Mn-N2	86.41(9)	
	Mn-O4	2.135(2)	O4-Mn-O3	90.16(10)	
	Mn-N2	2.253(2)	O4-Mn-N2	90.08(10)	
Symmetry transformations used to generate equivalent atoms: (i) $-x+1$, $-y+1$, $-z$					
2					
O QU ^İ	Zn-O3	2.170(4)	O3-Zn-N4	88.27(17)	
	Zn-O4	2.046(4)	O4-Zn-N4	86.07(17)	
N4 O3 O4	Zn-N4	2.117(4)	O4-Zn-O3	90.84(18)	
Symmetry transformations used to generate equivalent atoms: (i) $-x+1$, $-y$, $-z$					

Table S3 Hydrogen bond geometries for complexes $[Mn(HA)_2(H_2O)_4] \cdot 2H_2O$ (1) and $[Zn(HA)_2(H_2O)_4]$ (2).

D-H…A	D-H (Å)	H…A (Å)	D…A (Å)	D-H…A (°)		
1						
N1-H1…O1 ^{vi}	0.80(3)	2.08(4)	2.876(3)	176(3)		
О3-Н3…О5 [∨]	0.80(4)	2.07(4)	2.833(4)	159(4)		
O3-H31…O2 ⁱⁱ	0.83(5)	2.01(6)	2.835(3)	176(5)		
O4-H4…O5	0.85(4)	1.94(5)	2.787(4)	176(4)		
O4-H41…N3	0.79(5)	2.33(5)	2.976(3)	141(5)		
O4-H41…N4 ^{viii}	0.79(5)	2.65(5)	3.221(4)	131(5)		
O5-H5…N4 ⁱⁱⁱ	0.95(6)	1.94(6)	2.861(4)	162(5)		
O5-H51…O1 ^{vii}	0.89(7)	2.25(8)	2.917(3)	132(6)		
Symmetry transformations used to generate equivalent atoms: (ii) $-x+2$, $-y+1$, $-z+1$; (iii) $x-1$, y , $z-1$; (v) $x+1$, y , z ; (vi) $-x+1$, $-y$, $-z+1$; (vii) x , $y+1$, z ; (viii) $-x+2$, $-y+2$, $-z+1$						
2						
N1-H1…O3 ^v	0.86	2.20	3.000(6)	155.2		
O3-H3…O1 ^{vii}	0.69(7)	2.06(8)	2.748(6)	173(8)		
O3-H31…N2 ⁱⁱ	0.78(8)	2.14(8)	2.871(6)	155(7)		
O4-H4···N3 ^{vi}	0.71(8)	2.03(8)	2.732(6)	169(8)		
O4-H41…O2	0.81(7)	2.07(7)	2.810(5)	151(6)		
Symmetry transformations used to generate equivalent atoms: (ii) x-1, y-1, z-1; (v) x, y+1, z; (vi) x-1, y, z-1; (vii) -x+2, -y+1, -z						

Table S4 Effect of temperature on luminescence intensity of ashless cellulose filter paper saturated with salt (Mn(HA)₂, Zn(HA)₂, DMA⁺_HA⁻, Cu(HA)₂, Cd(HA)₂, Rhodamine 6G) water solution ^a.

	/2, (/2,		123 (123		
Mn(HA) ₂	Luminescence peak intensity at 27 °C (I _{Peak_27}), a.u.	Luminescence intensity of background at 532 nm at 27 °C (I_{0_27}), a.u.	Luminescence peak intensity at 123 °C (I _{Peak_123}), a.u.	Luminescence intensity of background at 532 nm at 123 °C (I _{0_123}), a.u.	$\frac{I_{\text{Peak}_27} - I_{0_27}}{I_{\text{Peak}_{123}} - I_{0_{123}}}$
	48413	568	8097	568	6.4
Zn(HA) ₂	Luminescence peak intensity at 28 °C (I _{Peak_28}), a.u.	Luminescence intensity of background at 532 nm at 28 °C ($I_{0,28}$), a.u.	Luminescence peak intensity at 123 °C (I _{Peak_123}), a.u.	Luminescence intensity of background at 532 nm at 123 °C ($I_{0_{-123}}$), a.u.	$\frac{I_{\text{Peak}_{28}} - I_{0_{28}}}{I_{\text{Peak}_{123}} - I_{0_{123}}}$
	38979	1061	6513	749	6.6
DMA+_HA-	Luminescence peak intensity at 27 °C (I _{Peak_27}), a.u.	Luminescence intensity of background at 531 nm at 27 °C ($I_{0,27}$), a.u.	Luminescence peak intensity at 123 °C (I _{Peak_123}), a.u.	Luminescence intensity of background at 531 nm at 123 °C ($I_{0_{-123}}$), a.u.	$\frac{I_{\text{Peak}_{27}} - I_{0_{27}}}{I_{\text{Peak}_{123}} - I_{0_{2123}}}$
	42287	789	7826	624	5.8
Cu(HA) ₂	Luminescence peak intensity at 28 °C (I _{Peak_28}), a.u.	Luminescence intensity of background at 534 nm at 28 °C (I _{0_28}), a.u.	Luminescence peak intensity at 123 °C (I _{Peak_123}), a.u.	Luminescence intensity of background at 534 nm at 123 °C (I _{0_123}), a.u.	$\frac{I_{\text{Peak}_{28}} - I_{0_{28}}}{I_{\text{Peak}_{123}} - I_{0_{123}}}$
	29267	620	4536	402	6.9
Cd(HA) ₂	Luminescence peak intensity at 28 °C (I _{Peak_28}), a.u.	Luminescence intensity of background at 534 nm at 28 °C ($I_{0,28}$), a.u.	Luminescence peak intensity at 124 °C (I _{Peak_124}), a.u.	Luminescence intensity of background at 534 nm at 124 °C ($I_{0_{-124}}$), a.u.	$\frac{I_{\text{Peak}_{28}} - I_{0_{28}}}{I_{\text{Peak}_{124}} - I_{0_{124}}}$
	47825	673	7254	547	7.0
Rhodamine 6G	Luminescence peak intensity at 28 °C (I _{Peak_28}), a.u.	Luminescence intensity of background at 562 nm at 28 °C ($I_{0,28}$), a.u.	Luminescence peak intensity at 124 °C (I _{Peak_124}), a.u.	Luminescence intensity of background at 562 nm at 124 °C ($I_{0_{-124}}$), a.u.	$\frac{I_{\text{Peak}_{28}} - I_{0_{28}}}{I_{\text{Peak}_{124}} - I_{0_{124}}}$
	49246	3856	30795	2489	1.6
^a Concentration of M(HA) ₂ in water solution is $2.9 \cdot 10^{-3}$ mol/L (M = Mn), $3.0 \cdot 10^{-3}$ mol/L (M = Cd), $1.5 \cdot 10^{-3}$ mol/L (M = Cu), $1.1 \cdot 10^{-3}$ mol/L (M = Zn). Concentration of DMA ⁺ _HA ⁻ in water solution is $2.9 \cdot 10^{-3}$ mol/L. Concentration of Rhodamine 6G in water solution is $6.1 \cdot 10^{-5}$ mol/L. Excitation wavelength is 365 nm.					