Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting information

High molecular weight polyethylenimine encapsulated into porous polymer

monolithic by one-step polymerization for CO₂ capture

Shuoyu Wang^{a,b}, Jingjie Wu^{a,b}, Nianfang Ma^c, Shuixia Chen^{a,b*}

^aPCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China

^bMaterials Science Institute, Sun Yat-Sen University, Guangzhou 510275, PR China

^cInstitute of Bioengineering, Guangdong Academy of Sciences; Guangdong Provincial

Engineering Technology Research Center of Biomaterials, Guangzhou 510316, China

^{*} Corresponding author. *E-mail address*: <u>cescsx@mail.sysu.edu.cn</u>

Figure S1. 4.0gPEI70K@polyHIPE monolithic columns and regular pellet

samples

Figure S2. SEM and EDS of the sample 4.0PEI70k@polyHIPE

Figure S3. N_2 adsorption-desorption isotherms (a) and pore size distributions (b) of polyHIPE-50%PEI70K.

Figure S4. TG and DTG curves of pure PEI70K.

Table S1. Emulsions compositions.

Sample	Continuous phase				Aq	Aqueous phase		
	St[g]	DVB[g]	Span 80[g]	AIBME[g]	H ₂ O[mL]	NaCl[g]	PEI*[g]	
polyHIPE	2.00	2.50	1.00	0.10	26.50	0.55	0.00	
0.5PEI70K@polyHIPE	2.00	2.50	1.00	0.10	26.00	0.55	1.00	

1.0PEI70K@polyHIPE	2.00	2.50	1.00	0.10	25.50	0.55	2.00
2.0PEI70K@polyHIPE	2.00	2.50	1.00	0.10	24.50	0.55	4.00
4.0PEI70K@polyHIPE	2.00	2.50	1.00	0.10	22.50	0.55	8.00
8.0PEI70K@polyHIPE	2.00	2.50	1.00	0.10	18.50	0.55	16.00

* 50%wt aqueous solution of PEI70K

Samples	amine	temperature (°C)	CO ₂ concentration	adsorption capacities (mmol/g)	Amine efficiency (molCO ₂ / molN)	reference	
4.0gPEI70K	DEI70V	20	10%	4.18(wet)	0.46	This	
@polyHIPE	1 L1/OK	60		2.35(dry)	0.26	work	
polyHIPE- 50%PEI70K	PEI70K	60	10%	2.09(dry)	0.21	This work	
Monolithic Alumina	PEI800	30	400ppm	0.75(dry)	-	1	
MCM-41 P	DEIGUU	75	15%	2.02(dry)	0.17	2	
	F E1000			2.97(wet)	0.2		
	TEPA			2.70(dry)	0.21		
MCM-41	PEI600	35	10%	1.60(dry)	0.13	3	
	PEI180 0			1.30(dry)	0.11		
ΡΜΙΛΛ	DEI 173	45	10%	2.40(dry)	0.32	4	
	1 11723	U U	1070	3.53(wet)	0.47		
porous silica monoliths	PEI600	75	100%	2.44(dry)	0.21	5	

Table S2. Comparison of the CO₂ Adsorption Capacities of Adsorbents

		25		1.00(dry)	0.09	
Nanoporous	DEIGOO	75	100%	1.01(dry)	0.13	6
carbon	r E1000	75	10%	0.23(dry)	0.03	
	MDEA	50	20%	0.58(dry)	0.26	7
AC	MDLA	50	2070	1.70(wet)	0.76	
PAF-5	PEI800	40	15%	2.52	0.19	8
SBA-15	TEPA	75	100%	3.93(dry)	0.3	9
SBA-15	PEI423	75	15%	2.38(dry)	0.21	10
ZSM-5	TEPA	100	10%	1.49(dry)	0.29	11
ZSM-5	PEI	120	100%	1.80(dry)	-	12
MIL-101	TEPA	25	100%	3.5(dry)	0.38	13
ZIF-8	PEI	65	50%	1.99(wet)	-	14
ZIF-8	DEIOOO	25	100%	0.90(dry)	0.05	15
	1 11000	25		0.90(wet)	0.05	
v alumina	DEIGUU	25	10%	1.73(dry)	0.20	16
y-aiuiiiiia	1 11000	23	400ppm	1.33(dry)	0.15	
PD_M	DEI	25	10%	1.21(dry)	0.09	17
rd-M	ΓEI	23	1070	1.96(wet)	0.15	

Table S3. CO₂ Adsorption capacities of 4.0PEIy@polyHIPE under 10% CO₂ in N₂ at 60

°C	in	fixed	hed
U	ш	IIACU	UCU.

Sample	C/%	H/%	N/%	CO ₂ adsorption capacity (mmol/g)
4.0PEI600@polyHIPE	55.28	9.45	11.77	2.16
4.0PEI1800@polyHIPE	57.65	9.87	12.80	2.26
4.0PEI10K@polyHIPE	58.72	9.59	11.23	2.17

References:

- 1 M. A. Sakwa-Novak, C. J. Yoo, S. Tan, F. Rashidi and C. W. Jones, ChemSusChem, 2016, 9, 1859–1868.
- X. Xu, C. Song, B. G. Miller and A. W. Scaroni, *Ind. Eng. Chem. Res.*, 2005, 44, 8113–8119.
- 3 Z. L. Liu, Y. Teng, K. Zhang, Y. Cao and W. P. Pan, *Ranliao Huaxue Xuebao/Journal Fuel Chem. Technol.*, 2013, **41**, 469–476.
- 4 M. L. Gray, J. S. Hoffman, D. C. Hreha, D. J. Fauth, S. W. Hedges, K. J. Champagne and H. W. Pennline, *Energy and Fuels*, 2009, **23**, 4840–4844.
- 5 X. Guo, L. Ding, K. Kanamori, K. Nakanishi and H. Yang, *Microporous Mesoporous Mater.*, 2017, **245**, 51–57.
- 6 Z. Tang, Z. Han, G. Yang and J. Yang, *Appl. Surf. Sci.*, 2013, 277, 47–52.
- A. Gholidoust, J. D. Atkinson and Z. Hashisho, *Energy and Fuels*, 2017, 31, 1756–1763.
- 8 S. Sung and M. P. Suh, J. Mater. Chem. A, 2014, 2, 13245–13249.
- M. B. Yue, Y. Chun, Y. Cao, X. Dong and J. H. Zhu, *Adv. Funct. Mater.*, 2006, 16, 1717–1722.
- X. Yan, L. Zhang, Y. Zhang, G. Yang and Z. Yan, *Ind. Eng. Chem. Res.*, 2011, 50, 3220–3226.
- Y. Wang, T. Du, Y. Song, S. Che, X. Fang and L. Zhou, *Solid State Sci.*, 2017, 73, 27–35.

- Y. Wang, T. Du, Z. Qiu, Y. Song, S. Che and X. Fang, *Mater. Chem. Phys.*, 2018, 207, 105–113.
- 13 H. C. Yoon, P. B. S. Rallapalli, H. T. Beum, S. S. Han and J. N. Kim, *Energy and Fuels*, 2018, **32**, 1365–1373.
- S. Xian, F. Xu, C. Ma, Y. Wu, Q. Xia, H. Wang and Z. Li, *Chem. Eng. J.*, 2015, 280, 363–369.
- J. Pokhrel, N. Bhoria, S. Anastasiou, T. Tsoufis, D. Gournis, G. Romanos and G.
 N. Karanikolos, *Microporous Mesoporous Mater.*, 2018, 267, 53–67.
- W. Chaikittisilp, H. J. Kim and C. W. Jones, *Energy and Fuels*, 2011, 25, 5528– 5537.
- H. Thakkar, S. Eastman, A. Al-Mamoori, A. Hajari, A. A. Rownaghi and F.
 Rezaei, ACS Appl. Mater. Interfaces, 2017, 9, 7489–7498.