Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

s1

New J. Chem.

Supporting Information

Puckering transition of proline residue along the pseudorotational path: revisited

Hae Sook Park^a and Young Kee Kang*^b

^a Department of Nursing, Cheju Halla University, Cheju 63092, Republic of Korea

^b Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea. E-mail: ykkang@chungbuk.ac.kr. http://orcid.org/0000-0002-2200-8922.

Page	Contents
s1–s3	Table of Contents
s4	Table S1. Torsion angles and thermodynamic properties of local minima for Ac-Pro-
	OH optimized at the M06-2X/6-31+G(d) level of theory in the gas phase
s4	Table S2. Torsion angles and thermodynamic properties of local minima for Ac-Pro-
	OH optimized at the SMD M06-2X/6-31+G(d) level of theory in water
s5	Table S3. Torsion angles and electronic energies of Ac-trans-Pro-OH along the
	pseudorotation phase angle optimized at the M06-2X/6-31+G(d) level of theory in the
	gas phase
s6	Table S4. Torsion angles and electronic energies of Ac-cis-Pro-OH along the
	pseudorotation phase angle optimized at the M06-2X/6-31+G(d) level of theory in the
	gas phase
s7	Table S5. Torsion angles and electronic energies of Ac-trans-Pro-OH along the
	pseudorotation phase angle optimized at the SMD M06-2X/6-31+G(d) level of theory
	in water
s8	Table S6. Torsion angles and electronic energies of Ac-cis-Pro-OH along the
	pseudorotation phase angle optimized at the SMD M06-2X/6-31+G(d) level of theory
	in water

- s9 Table S7. Torsion angles and electronic energies of Ac-*trans*-Pro-OMe along the pseudorotation phase angle optimized at the M06-2X/6-31+G(d) level of theory in the gas phase
- s10 Table S8. Torsion angles and electronic energies of Ac-*cis*-Pro-OMe along the pseudorotation phase angle optimized at the M06-2X/6-31+G(d) level of theory in the gas phase
- s11 Table S9. Torsion angles and electronic energies of Ac-*trans*-Pro-OMe along the pseudorotation phase angle optimized at the SMD M06-2X/6-31+G(d) level of theory in water
- s12 Table S10. Torsion angles and electronic energies of Ac-*cis*-Pro-OMe along the pseudorotation phase angle optimized at the SMD M06-2X/6-31+G(d) level of theory in water
- s13 Table S11. Torsion angles and electronic energies of Ac-*trans*-Pro-NHMe along the pseudorotation phase angle optimized at the M06-2X/6-31+G(d) level of theory in the gas phase
- s14 Table S12. Torsion angles and electronic energies of Ac-*cis*-Pro-NHMe along the pseudorotation phase angle optimized at the M06-2X/6-31+G(d) level of theory in the gas phase
- s15 Table S13. Torsion angles and electronic energies of Ac-*trans*-Pro-NHMe along the pseudorotation phase angle optimized at the SMD M06-2X/6-31+G(d) level of theory in water
- s16 Table S14. Torsion angles and electronic energies of Ac-*cis*-Pro-NHMe along the pseudorotation phase angle optimized at the SMD M06-2X/6-31+G(d) level of theory in water
- s17 Table S15. Absolute electronic energies, enthalpies, and Gibbs free energies of local minima and transition states for puckering transitions of Ac-Pro-OH, Ac-Pro-OMe, and Ac-Pro-NHMe at M06-2X/6-31+G(d) level of theory in the gas phase and M06-2X/6-31+G(d) level of theory in water
- s18 Table S16. Absolute single-point energies of local minima and transition states for puckering transitions of Ac-Pro-OH, Ac-Pro-OMe, and Ac-Pro-NHMe at CCSD(T) and MP2 levels of theory in the gas phase

- Table S17. Absolute single-point energies of local minima and transition states for puckering transitions of Ac-Pro-OH, Ac-Pro-OMe, and Ac-Pro-NHMe at DSD-PBEP86-D3BJ and M06-2X levels of theory in the gas phase
- s20 Table S18. Absolute single-point energies of local minima and transition states for puckering transitions of Ac-Pro-OH, Ac-Pro-OMe, and Ac-Pro-NHMe at CCSD(T) and MP2 levels of theory in water
- s21 Table S19. Absolute single-point energies of local minima and transition states for puckering transitions of Ac-Pro-OH, Ac-Pro-OMe, and Ac-Pro-NHMe at DSD-PBEP86-D3BJ and M06-2X levels of theory in water
- s22 Figure S1. Puckering transitions of local minima and transition states of Ac-Pro-OH with *trans* and *cis* prolyl peptide bonds in the gas phase and water
- s23 Figure S2. Puckering transitions of local minima and transition states of Ac-Pro-OMe with *trans* and *cis* prolyl peptide bonds in the gas phase and water
- s24 Table S20. Torsion angles and relative electronic energies of Ac-*trans*-X-OMe optimized at the SMD M06-2X/6-31+G(d) level of theory in water
- Table S21. Absolute electronic energies, enthalpies, Gibbs free energies, and singlepoint energies of local minima and transition states for puckering transitions of Ac*trans*-X-OMe optimized at the SMD M06-2X/6-31+G(d) level of theory in water
- s26–s39 Cartesian coordinates of local minima and transition states for puckering transitions of Ac-Pro-OH, Ac-Pro-OMe, and Ac-Pro-NHMe optimized at M06-2X/6-31+G(d) level of theory in the gas phase and SMD M06-2X/6-31+G(d) level of theory in water
- s40–s43 Cartesian coordinates of transition state ts1 for puckering transition of Ac-*trans*-X-OMe optimized at SMD M06-2X/6-31+G(d) level of theory in water

Conf. ^b	ω'	ϕ	Ψ	ω	χ_1	χ_2	X3	χ_4	X5	ΔE^{c}	ΔH^d	ΔG^e
tCd	-171.6	-80.1	63.5	-2.7	31.8	-39.9	32.0	-12.5	-12.2	0.00	0.00	0.00
<i>t</i> Cu	-171.2	-77.4	64.4	-4.6	-19.3	35.5	-37.8	27.1	-4.9	1.64	1.79	1.97
<i>t</i> Fd	174.3	-64.7	156.7	178.5	32.7	-37.8	28.2	-7.9	-15.7	2.47	2.51	1.81
tAd	175.4	-62.5	-24.0	179.9	31.9	-37.8	28.8	-9.0	-14.5	3.11	3.17	2.52
<i>t</i> Fu	176.3	-55.0	146.0	178.9	-23.3	37.1	-36.3	23.0	0.1	3.24	3.22	2.36
tAu	177.0	-52.5	-34.8	-179.7	-24.2	37.5	-36.1	22.1	1.3	3.43	3.44	2.90
cFd	-2.2	-73.6	170.4	178.5	34.0	-38.3	27.8	-6.3	-17.6	3.75	3.65	2.59
cAd	-3.8	-72.2	-18.7	-178.0	33.8	-37.6	26.7	-5.4	-18.0	4.02	3.90	2.75
cAu	-2.2	-56.7	-35.6	-176.5	-25.7	38.2	-35.7	20.6	3.2	4.46	4.50	3.85
<i>c</i> Fu	-1.6	-59.0	165.1	177.0	-25.1	37.6	-35.4	20.6	2.9	4.48	4.46	3.84

Table S1 Torsion angles and thermodynamic properties of local minima for Ac-Pro-OH optimized at the M06-2X/6-31+G(d) level of theory in the gas phase^a

^{*a*} Torsion angles (°) are defined in Fig. 1c. ^{*b*} See the text for definition. For example, the first conformational letter code *t*Cd denotes that the backbone conformation of the Pro residue is C with the *trans* prolyl peptide bond and the down puckering. ^{*c*} Relative electronic energies in kcal mol⁻¹. ^{*d*} Relative enthalpies in kcal mol⁻¹ at 25 °C. ^{*e*} Relative Gibbs free energies in kcal mol⁻¹ at 25 °C and 1 atm.

Table S2 Torsion angles and thermodynamic properties of local minima for Ac-Pro-OH optimized at the SMD M06-2X/6-31+G(d) level of theory in water^{*a*}

Conf. ^b	ω'	ϕ	Ψ	ω	χ_1	χ_2	X3	χ_4	X5	ΔE^{c}	ΔH^d	ΔG^e
tCd	-169.0	-78.8	59.1	-1.8	-10.6	31.1	-40.2	33.1	-14.2	0.00	0.00	0.38
<i>t</i> Fd	176.4	-65.7	162.0	177.0	-13.2	31.4	-38.3	30.0	-10.5	0.38	0.43	0.00
<i>t</i> Fu	-179.8	-54.8	148.1	176.5	7.6	-29.0	39.6	-34.6	17.0	0.56	0.72	0.56
tAu	175.8	-51.2	-36.5	-176.6	0.9	-24.0	37.8	-36.6	22.6	0.78	1.09	1.19
tAd	176.1	-60.7	-27.2	-177.5	-11.1	29.8	-37.5	30.4	-12.1	0.80	1.05	0.87
<i>c</i> Fd	-4.2	-74.2	168.2	177.9	-18.3	34.3	-38.1	27.0	-5.4	1.18	1.25	0.71
<i>t</i> Cu	-168.3	-72.6	53.8	-1.1	1.9	-25.2	38.7	-37.0	22.1	1.23	1.25	1.82
cAd	-6.6	-72.8	-12.7	-178.4	-21.9	35.7	-37.1	23.9	-1.1	1.77	1.92	1.48
<i>c</i> Fu	-2.5	-58.2	163.3	176.3	5.5	-27.1	38.5	-34.8	18.4	1.93	2.08	1.44
cAu	-9.1	-53.4	-31.9	-176.6	-0.7	-22.6	37.0	-36.9	23.7	2.45	2.50	0.71

^{*a*} Torsion angles (°) are defined in Fig. 1c. ^{*b*} See the text for definition. For example, the first conformational letter code *t*Cd denotes that the backbone conformation of the Pro residue is C with the *trans* prolyl peptide bond and the down puckering. ^{*c*} Relative electronic energies in kcal mol⁻¹. ^{*d*} Relative enthalpies in kcal mol⁻¹ at 25 °C. ^{*e*} Relative Gibbs free energies in kcal mol⁻¹ at 25 °C and 1 atm.

$\overline{P(^{\circ})^{b}}$	Letter code ^c	ω'	ϕ	Ψ	ω	χ_1	χ_2	X3	χ_4	X5	E^{d}	ΔE^{e}
0	$_{eta} \mathrm{T}^{\gamma}$	-169.9	-72.8	62.0	-5.8	-31.2	38.6	-31.1	12.2	11.8	-553.6106979	2.68
18	\mathbf{E}^{γ}	-170.7	-76.5	63.8	-4.8	-22.7	36.7	-36.4	23.4	-0.5	-553.6122676	1.69
36	γT_{δ}	-172.4	-78.6	65.0	-4.2	-11.9	31.2	-38.4	32.7	-13.1	-553.6120941	1.80
54	Eδ	-175.7	-78.6	65.0	-3.0	0.0	22.7	-36.6	38.7	-24.4	-553.6108072	2.61
72	$\delta \mathbf{T}^N$	-179.2	-78.0	65.1	-1.8	11.9	11.9	-31.1	40.8	-33.2	-553.6094298	3.47
90	E^N	178.6	-78.0	65.9	-1.3	22.7	0.0	-22.6	38.8	-38.9	-553.6087782	3.88
108	${}^{N}T_{\alpha}$	178.2	-78.3	66.2	-1.0	31.2	-11.9	-11.8	32.9	-40.6	-553.6091800	3.63
126	Eα	179.2	-78.4	65.3	-0.8	36.7	-22.7	0.2	24.0	-38.5	-553.6103477	2.90
144	αT^{β}	-178.5	-78.6	63.9	-0.8	38.6	-31.2	11.9	13.1	-32.8	-553.6121195	1.78
162	E^{eta}	-175.4	-79.2	63.3	-1.4	36.7	-36.7	22.3	0.9	-23.8	-553.6140020	0.60
180	βT_{γ}	-171.7	-80.1	63.8	-2.8	31.2	-38.6	30.6	-11.4	-12.5	-553.6149614	0.00
198	\mathbf{E}_{γ}	-167.9	-80.7	64.7	-4.1	22.7	-36.7	36.0	-22.7	0.0	-553.6138537	0.70
216	$_{\gamma} T^{\delta}$	-165.6	-79.6	65.9	-5.9	11.9	-31.2	38.2	-32.1	12.6	-553.6103224	2.91
234	E^δ	-165.4	-75.5	65.9	-8.4	0.0	-22.7	36.7	-38.2	23.8	-553.6058747	5.70
252	$\delta \mathbf{T}_N$	-165.8	-69.3	61.7	-9.2	-11.9	-11.9	31.3	-40.3	32.3	-553.6022796	7.96
270	E_N	-166.5	-63.0	55.4	-8.4	-22.7	0.0	22.8	-38.5	37.9	-553.6004668	9.10
288	$_{N}T^{lpha}$	-167.4	-59.4	51.9	-7.8	-31.2	11.9	12.0	-32.6	39.6	-553.6004023	9.14
306	Eα	-168.9	-59.9	54.1	-8.6	-36.7	22.7	-0.1	-23.6	37.5	-553.6015982	8.39
324	$^{lpha}\mathrm{T}_{eta}$	-168.5	-64.2	58.0	-8.8	-38.6	31.2	-12.1	-12.4	31.7	-553.6041400	6.79
342	E_{eta}	-168.9	-68.5	59.7	-7.0	-36.7	36.7	-22.7	-0.1	22.9	-553.6076669	4.58
360	$_{\beta} T^{\gamma}$	-169.9	-72.8	62.0	-5.8	-31.2	38.6	-31.1	12.2	11.8	-553.6106979	2.68

Table S3 Torsion angles and electronic energies of Ac-*trans*-Pro-OH along the pseudorotation phase angle optimized at the M06-2X/6-31+G(d) level of theory in the gas phase^{*a*}

$P(^{\circ})^{b}$	Letter code ^c	ω'	ϕ	ψ	ω	χ_1	χ_2	Х3	χ_4	X5	E^{l}	ΔE^{e}
0	$_{\beta}T^{\gamma}$	4.6	-59.8	159.1	176.3	-31.2	38.6	-31.2	11.9	12.1	-553.6075455	0.84
18	\mathbf{E}^{γ}	-3.3	-59.1	166.5	177.1	-22.7	36.7	-36.5	23.4	-0.5	-553.6077915	0.69
36	γTs	-10.7	-61.2	169.9	177.4	-11.9	31.2	-38.4	32.9	-13.3	-553.6070954	1.13
54	Eδ	-15.9	-63.4	173.6	178.4	0.0	22.7	-36.6	39.0	-24.6	-553.6060775	1.76
72	$\delta \mathrm{T}^N$	-19.8	-66.2	177.3	179.9	11.9	11.9	-30.9	40.9	-33.3	-553.6050692	2.40
90	E^N	-21.5	-67.5	-178.9	-178.9	22.7	0.0	-22.3	38.9	-39.0	-553.6044816	2.77
108	${}^{N}T_{\alpha}$	-20.8	-69.8	-178.0	-179.0	31.2	-11.9	-11.4	33.0	-40.7	-553.6048945	2.51
126	Eα	-18.5	-71.3	179.2	179.9	36.7	-22.7	0.7	24.0	-38.5	-553.6062243	1.67
144	αT^{β}	-13.9	-72.3	175.1	179.1	38.6	-31.2	12.3	13.1	-32.8	-553.6077145	0.74
162	E^{eta}	-7.0	-72.8	171.2	178.8	36.7	-36.7	22.7	0.9	-23.8	-553.6087544	0.08
180	βT_{γ}	1.4	-73.8	168.9	178.0	31.2	-38.6	30.9	-11.6	-12.5	-553.6088888	0.00
198	\mathbf{E}_{γ}	8.5	-69.0	161.6	176.7	22.7	-36.7	36.2	-23.2	0.3	-553.6077625	0.71
216	$_{\gamma} T^{\delta}$	16.4	-69.2	157.4	175.9	11.9	-31.2	38.3	-32.7	13.1	-553.6055199	2.11
234	E^δ	21.9	-68.2	156.0	175.5	0.0	-22.7	36.6	-38.8	24.3	-553.6028206	3.81
252	$\delta \mathbf{T}_N$	25.2	-65.4	152.6	175.0	-11.9	-11.9	31.1	-40.8	33.0	-553.6007573	5.10
270	E_N	26.1	-61.9	147.9	175.0	-22.7	0.0	22.5	-38.8	38.5	-553.5997495	5.74
288	$_{N}T^{lpha}$	25.2	-60.2	146.0	175.1	-31.2	11.9	11.5	-32.8	40.2	-553.6000218	5.56
306	Eα	22.0	-59.5	147.7	175.0	-36.7	22.7	-0.7	-23.8	38.0	-553.6013978	4.70
324	$^{lpha}\mathrm{T}_{eta}$	17.5	-59.7	150.5	175.0	-38.6	31.2	-12.4	-12.7	32.3	-553.6035956	3.32
342	E_{eta}	11.8	-60.2	154.3	175.6	-36.7	36.7	-22.9	-0.5	23.4	-553.6059293	1.86
360	$_{\beta}T^{\gamma}$	4.6	-59.8	159.1	176.3	-31.2	38.6	-31.2	11.9	12.1	-553.6075455	0.84

Table S4 Torsion angles and electronic energies of Ac-*cis*-Pro-OH along the pseudorotation phase angle optimized at the M06-2X/6-31+G(d) level of theory in the gas phase^{*a*}

$\overline{P(^{\circ})^{b}}$	Letter code ^c	ω'	ϕ	Ψ	ω	χ_1	χ_2	X3	χ_4	X5	E^{d}	ΔE^{e}
0	$_{eta} \mathrm{T}^{\gamma}$	-177.9	-54.9	147.1	176.5	-31.2	38.6	-30.8	11.5	12.5	-553.6357941	0.33
18	E^{γ}	176.1	-55.2	152.6	176.0	-22.7	36.7	-36.1	23.0	-0.2	-553.6357651	0.34
36	γT_{δ}	172.2	-58.5	161.9	175.7	-11.9	31.2	-38.3	32.5	-13.0	-553.6348619	0.91
54	Eδ	168.9	-60.5	167.1	176.7	0.0	22.7	-36.5	38.5	-24.2	-553.6333486	1.86
72	$\delta \mathrm{T}^N$	165.2	-61.1	169.0	178.2	11.9	11.9	-30.8	40.4	-32.9	-553.6316995	2.89
90	\mathbf{E}^N	164.9	-63.7	173.2	179.9	22.7	0.0	-22.2	38.4	-38.5	-553.6306818	3.53
108	${}^{N}T_{\alpha}$	165.6	-66.0	174.6	179.8	31.2	-11.9	-11.3	32.6	-40.2	-553.6308972	3.40
126	Eα	166.8	-67.4	172.6	178.6	36.7	-22.7	0.7	23.6	-38.1	-553.6322807	2.53
144	αT^{β}	168.1	-66.6	168.7	178.2	38.6	-31.2	12.4	12.7	-32.4	-553.6341118	1.38
162	E^{eta}	172.0	-65.6	163.8	177.5	36.7	-36.7	22.6	0.8	-23.7	-553.6355926	0.45
180	βT_{γ}	176.7	-65.7	162.1	176.9	31.2	-38.6	30.7	-11.4	-12.5	-553.6363123	0.00
198	${ m E}_{\gamma}$	-178.9	-64.1	157.5	175.8	22.7	-36.7	36.0	-22.9	0.1	-553.6356780	0.40
216	$_{\gamma} T^{\delta}$	-172.7	-62.6	151.4	174.8	11.9	-31.2	38.1	-32.4	12.9	-553.6337471	1.61
234	E^δ	-168.5	-62.5	148.8	175.2	0.0	-22.7	36.5	-38.5	24.2	-553.6314979	3.02
252	δT_N	-166.6	-59.5	143.9	175.9	-11.9	-11.9	30.9	-40.4	32.9	-553.6297641	4.11
270	E_N	-167.0	-55.9	140.6	176.2	-22.7	0.0	22.4	-38.6	38.6	-553.6286791	4.79
288	$_{N}T^{lpha}$	-167.5	-53.5	137.4	176.5	-31.2	11.9	11.5	-32.8	40.3	-553.6287795	4.73
306	E^{lpha}	-168.9	-53.1	138.6	176.4	-36.7	22.7	-0.5	-23.8	38.2	-553.6299159	4.01
324	$^{lpha}\mathrm{T}_{eta}$	-171.0	-53.8	141.0	176.5	-38.6	31.2	-12.2	-12.9	32.5	-553.6319550	2.73
342	E_{eta}	-173.3	-55.1	144.4	176.5	-36.7	36.7	-22.7	-0.7	23.7	-553.6343066	1.26
360	βT^{γ}	-177.9	-54.9	147.1	176.5	-31.2	38.6	-30.8	11.5	12.5	-553.6357941	0.33

Table S5 Torsion angles and electronic energies of Ac-*trans*-Pro-OH along the pseudorotation phase angle optimized at the SMD M06-2X/6-31+G(d) level of theory in water^a

$P(^{\circ})^{b}$	Letter code ^c	ω'	ϕ	Ψ	ω	χ_1	χ_2	X3	χ_4	X5	E^{d}	ΔE^{e}
0	$_{eta} \mathrm{T}^{\gamma}$	1.7	-59.0	160.5	175.5	-31.2	38.6	-31.1	11.8	12.2	-553.6335272	0.79
18	\mathbf{E}^{γ}	-8.1	-56.5	166.1	176.8	-22.7	36.7	-36.3	23.1	-0.3	-553.6336854	0.69
36	${}^{\gamma}T_{\delta}$	-15.6	-56.7	168.1	176.0	-11.9	31.2	-38.4	32.6	-13.0	-553.6330895	1.06
54	Eδ	-20.9	-60.5	170.7	177.6	0.0	22.7	-36.6	38.6	-24.3	-553.6319087	1.80
72	$\delta \mathbf{T}^N$	-22.4	-65.3	176.2	-179.9	11.9	11.9	-30.9	40.6	-33.1	-553.6307109	2.55
90	\mathbf{E}^N	-24.4	-66.4	-178.4	-178.6	22.7	0.0	-22.3	38.6	-38.7	-553.6301918	2.88
108	${}^{N}T_{\alpha}$	-23.4	-69.0	-178.0	-178.6	31.2	-11.9	-11.5	32.8	-40.5	-553.6305985	2.62
126	Eα	-20.9	-69.1	178.5	179.5	36.7	-22.7	0.6	23.8	-38.3	-553.6321134	1.67
144	αT^{β}	-15.3	-71.4	173.5	178.7	38.6	-31.2	12.2	13.0	-32.6	-553.6336955	0.68
162	E^{eta}	-9.1	-71.8	168.3	178.5	36.7	-36.7	22.6	1.0	-23.8	-553.6347708	0.01
180	βT_{γ}	-0.6	-74.6	168.2	177.2	31.2	-38.6	30.7	-11.3	-12.6	-553.6347792	0.00
198	\mathbf{E}_{γ}	7.8	-71.9	160.7	175.5	22.7	-36.7	36.1	-22.8	0.1	-553.6334120	0.86
216	$_{\gamma} T^{\delta}$	15.5	-69.7	156.9	174.9	11.9	-31.2	38.2	-32.3	12.8	-553.6310476	2.34
234	E^δ	21.9	-71.5	155.8	174.7	0.0	-22.7	36.6	-38.4	24.0	-553.6282039	4.13
252	${}^{\partial}\!\mathrm{T}_N$	24.1	-68.2	155.9	173.9	-11.9	-11.9	31.1	-40.3	32.6	-553.6259756	5.52
270	\mathbf{E}_N	24.2	-64.8	155.3	173.6	-22.7	0.0	22.4	-38.3	38.1	-553.6248252	6.25
288	$_{N}T^{\alpha}$	22.3	-63.1	154.0	174.1	-31.2	11.9	11.4	-32.4	39.8	-553.6250540	6.10
306	Eα	18.9	-60.7	152.8	174.4	-36.7	22.7	-0.7	-23.4	37.7	-553.6265566	5.16
324	$^{lpha}\mathrm{T}_{eta}$	14.9	-60.7	154.3	174.7	-38.6	31.2	-12.5	-12.5	32.1	-553.6290264	3.61
342	E_{eta}	8.3	-60.0	156.6	175.1	-36.7	36.7	-22.9	-0.5	23.4	-553.6316800	1.94
360	βT^{γ}	1.7	-59.0	160.5	175.5	-31.2	38.6	-31.1	11.8	12.2	-553.6335272	0.79

Table S6 Torsion angles and electronic energies of Ac-*cis*-Pro-OH along the pseudorotation phase angle optimized at the SMD M06-2X/6-31+G(d) level of theory in water^a

$P(^{\circ})^{b}$	Letter code ^c	ω'	ϕ	Ψ	ω	χ_1	χ_2	X3	χ_4	X5	E^d	ΔE^{e}
0	$_{\beta}T^{\gamma}$	-179.6	-52.6	137.4	-178.4	-31.2	38.6	-30.8	11.7	12.3	-592.8940220	0.96
18	\mathbf{E}^{γ}	175.8	-53.4	141.8	-179.0	-22.7	36.7	-36.2	23.3	-0.5	-592.8944971	0.66
36	γT_{δ}	171.7	-56.0	148.8	179.8	-11.9	31.2	-38.3	32.8	-13.3	-592.8939175	1.02
54	Eδ	168.4	-60.3	158.7	178.5	0.0	22.7	-36.6	38.9	-24.6	-592.8928909	1.67
72	$\delta \mathrm{T}^N$	166.8	-63.4	163.9	178.9	11.9	11.9	-30.9	40.8	-33.3	-592.8918366	2.33
90	E^N	166.1	-66.3	167.5	179.6	22.7	0.0	-22.3	38.8	-38.9	-592.8910787	2.80
108	${}^{N}T_{\alpha}$	166.7	-68.6	167.8	179.6	31.2	-11.9	-11.4	32.9	-40.6	-592.8913796	2.61
126	Eα	168.4	-69.7	165.5	179.2	36.7	-22.7	0.6	24.0	-38.5	-592.8926675	1.81
144	αT^{β}	169.2	-67.8	161.2	179.2	38.6	-31.2	12.2	13.0	-32.7	-592.8941926	0.85
162	E^{eta}	171.6	-65.8	158.1	179.2	36.7	-36.7	22.6	0.8	-23.8	-592.8952807	0.17
180	${}^{eta}\mathrm{T}_{\gamma}$	175.1	-63.7	153.6	179.0	31.2	-38.6	30.8	-11.6	-12.4	-592.8955457	0.00
198	${ m E}_{\gamma}$	178.6	-60.1	146.2	179.9	22.7	-36.7	36.1	-23.1	0.3	-592.8944920	0.66
216	$_{\gamma} T^{\delta}$	-176.4	-59.7	141.6	-179.4	11.9	-31.2	38.1	-32.7	13.2	-592.8921851	2.11
234	E^δ	-172.7	-58.3	137.6	-178.7	0.0	-22.7	36.5	-39.0	24.6	-592.8897000	3.67
252	$\delta \mathbf{T}_N$	-171.2	-54.9	134.1	-178.0	-11.9	-11.9	31.1	-41.0	33.4	-592.8878502	4.83
270	E_N	-170.7	-51.7	130.3	-176.7	-22.7	0.0	22.6	-39.2	39.0	-592.8871167	5.29
288	NT^{α}	-171.2	-50.5	130.2	-176.8	-31.2	11.9	11.7	-33.3	40.7	-592.8873107	5.17
306	E^{lpha}	-172.9	-49.8	130.9	-177.2	-36.7	22.7	-0.3	-24.3	38.6	-592.8884034	4.48
324	$^{lpha}\mathrm{T}_{eta}$	-174.6	-50.2	132.4	-177.6	-38.6	31.2	-12.0	-13.2	32.8	-592.8902271	3.34
342	E_{eta}	-176.2	-52.1	134.9	-178.1	-36.7	36.7	-22.5	-0.8	23.7	-592.8923665	1.99
360	βT^{γ}	-179.6	-52.6	137.4	-178.4	-31.2	38.6	-30.8	11.7	12.3	-592.8940220	0.96

Table S7 Torsion angles and electronic energies of Ac-*trans*-Pro-OMe along the pseudorotation phase angle optimized at the M06-2X/6-31+G(d) level of theory in the gas phase^{*a*}

$P(^{\circ})^{b}$	Letter code ^c	ω'	ϕ	Ψ	ω	χ_1	χ_2	X3	χ_4	X5	E^{d}	ΔE^{e}
0	$_{\beta}T^{\gamma}$	3.9	-58.2	152.3	176.5	-31.2	38.6	-31.0	11.9	12.2	-592.8920809	0.77
18	\mathbf{E}^{γ}	-3.2	-58.5	157.9	176.6	-22.7	36.7	-36.4	23.4	-0.4	-592.8922473	0.66
36	${}^{\gamma}T_{\delta}$	-11.2	-60.1	168.5	177.1	-11.9	31.2	-38.4	32.9	-13.3	-592.8915072	1.13
54	Eδ	-16.0	-64.0	172.8	178.2	0.0	22.7	-36.6	39.0	-24.6	-592.8903855	1.83
72	$\delta \mathbf{T}^N$	-20.0	-65.5	177.8	179.5	11.9	11.9	-31.0	40.9	-33.3	-592.8893587	2.48
90	E^N	-21.3	-68.0	-177.7	-179.5	22.7	0.0	-22.3	39.0	-39.0	-592.8888643	2.79
108	${}^{N}T_{\alpha}$	-20.9	-69.6	-177.0	-179.2	31.2	-11.9	-11.4	33.0	-40.7	-592.8892904	2.52
126	Eα	-18.2	-71.3	177.7	179.7	36.7	-22.7	0.6	24.0	-38.6	-592.8906455	1.67
144	αT^{β}	-14.1	-71.6	174.2	179.2	38.6	-31.2	12.3	13.1	-32.8	-592.8921711	0.71
162	E^{eta}	-7.4	-72.7	168.7	178.3	36.7	-36.7	22.6	0.9	-23.9	-592.8931719	0.08
180	βT_{γ}	-0.2	-69.0	160.8	177.3	31.2	-38.6	30.9	-11.6	-12.4	-592.8933038	0.00
198	\mathbf{E}_{γ}	8.2	-69.5	156.4	176.3	22.7	-36.7	36.2	-23.1	0.3	-592.8922475	0.66
216	$_{\gamma} T^{\delta}$	16.1	-68.5	151.7	176.2	11.9	-31.2	38.3	-32.7	13.1	-592.8900126	2.07
234	E^δ	21.6	-66.7	148.0	176.3	0.0	-22.7	36.6	-38.9	24.4	-592.8873519	3.73
252	${}^{\partial}\!\mathrm{T}_N$	24.4	-63.3	143.1	176.8	-11.9	-11.9	31.1	-40.9	33.1	-592.8854094	4.95
270	\mathbf{E}_N	25.9	-59.3	135.1	178.1	-22.7	0.0	22.6	-38.9	38.7	-592.8845449	5.50
288	$_{N}T^{\alpha}$	25.0	-57.7	135.5	177.8	-31.2	11.9	11.6	-33.0	40.3	-592.8848724	5.29
306	Eα	21.7	-57.1	137.0	177.6	-36.7	22.7	-0.5	-23.9	38.1	-592.8862324	4.44
324	$^{lpha}\mathrm{T}_{eta}$	17.0	-57.4	139.5	177.3	-38.6	31.2	-12.3	-12.9	32.4	-592.8883334	3.12
342	E_{β}	11.2	-58.6	148.8	176.4	-36.7	36.7	-22.8	-0.6	23.5	-592.8905424	1.73
360	$_{\beta}T^{\gamma}$	3.9	-58.2	152.3	176.5	-31.2	38.6	-31.0	11.9	12.2	-592.8920809	0.77

Table S8 Torsion angles and electronic energies of Ac-*cis*-Pro-OMe along the pseudorotation phase angle optimized at the M06-2X/6-31+G(d) level of theory in the gas phase^{*a*}

$P(^{\circ})^{b}$	Letter code ^c	ω'	ϕ	ψ	ω	χ_1	χ_2	X3	χ_4	X5	E^{l}	ΔE^{e}
0	$_{eta} \mathrm{T}^{\gamma}$	-178.4	-53.3	143.4	176.7	-31.2	38.6	-30.7	11.5	12.5	-592.9153091	0.25
18	E^{γ}	177.8	-54.8	147.1	176.6	-22.7	36.7	-36.1	22.9	-0.1	-592.9150953	0.38
36	γTδ	172.3	-58.3	160.6	176.3	-11.9	31.2	-38.2	32.5	-13.0	-592.9142667	0.90
54	Eδ	169.0	-60.5	165.6	176.8	0.0	22.7	-36.4	38.5	-24.2	-592.9127248	1.87
72	$\delta \mathrm{T}^N$	167.4	-63.1	170.6	-179.9	11.9	11.9	-30.8	40.5	-33.0	-592.9110555	2.92
90	E^N	163.8	-64.6	176.4	-179.3	22.7	0.0	-22.2	38.5	-38.5	-592.9100493	3.55
108	$^{N}T_{\alpha}$	164.2	-66.3	177.7	-178.6	31.2	-11.9	-11.3	32.6	-40.3	-592.9100756	3.53
126	Eα	166.4	-66.9	171.0	178.2	36.7	-22.7	0.7	23.6	-38.1	-592.9114724	2.65
144	$_{\alpha}T^{\beta}$	168.7	-66.2	168.3	177.6	38.6	-31.2	12.3	12.8	-32.4	-592.9134484	1.41
162	E^{eta}	171.7	-64.6	162.1	177.5	36.7	-36.7	22.6	0.8	-23.6	-592.9151117	0.37
180	βT_{γ}	175.9	-63.1	158.2	176.4	31.2	-38.6	30.7	-11.5	-12.4	-592.9157025	0.00
198	\mathbf{E}_{γ}	179.4	-59.3	149.5	176.5	22.7	-36.7	36.0	-22.9	0.2	-592.9150662	0.40
216	$_{\gamma}T^{\delta}$	-174.2	-61.4	149.2	174.5	11.9	-31.2	38.0	-32.3	12.9	-592.9132621	1.53
234	E^δ	-170.6	-59.6	146.8	174.9	0.0	-22.7	36.4	-38.5	24.2	-592.9110640	2.91
252	δT_N	-168.0	-58.1	143.0	176.5	-11.9	-11.9	30.9	-40.5	32.9	-592.9091902	4.09
270	\mathbf{E}_N	-166.8	-55.7	139.7	177.2	-22.7	0.0	22.4	-38.5	38.6	-592.9082321	4.69
288	NT^{α}	-166.2	-54.2	136.8	177.8	-31.2	11.9	11.5	-32.7	40.3	-592.9084549	4.55
306	E^{lpha}	-167.9	-53.3	136.8	177.8	-36.7	22.7	-0.5	-23.8	38.2	-592.9096059	3.83
324	αT_{β}	-170.4	-53.4	138.9	177.1	-38.6	31.2	-12.2	-12.9	32.5	-592.9116219	2.56
342	E_{eta}	-174.2	-52.7	140.4	177.1	-36.7	36.7	-22.6	-0.9	23.8	-592.9138166	1.18
360	$_{\beta} T^{\gamma}$	-178.4	-53.3	143.4	176.7	-31.2	38.6	-30.7	11.5	12.5	-592.9153091	0.25

Table S9 Torsion angles and electronic energies of Ac-*trans*-Pro-OMe along the pseudorotation phase angle optimized at the SMD M06-2X/6-31+G(d) level of theory in water^a

$P(^{\circ})^{b}$	Letter code ^c	ω'	ϕ	Ψ	ω	χ_1	χ_2	X3	χ_4	X5	E^{l}	ΔE^{e}
0	βT^{γ}	0.2	-57.4	150.2	176.2	-31.2	38.6	-30.9	11.7	12.3	-592.9129655	0.82
18	\mathbf{E}^{γ}	-8.1	-56.8	162.5	175.7	-22.7	36.7	-36.3	23.1	-0.3	-592.9131962	0.68
36	γT_{δ}	-15.6	-55.6	165.4	175.3	-11.9	31.2	-38.4	32.5	-13.0	-592.9125586	1.08
54	Eδ	-20.3	-61.0	170.6	176.2	0.0	22.7	-36.6	38.6	-24.3	-592.9112604	1.89
72	$\delta \mathbf{T}^N$	-23.2	-63.5	175.8	-179.7	11.9	11.9	-30.9	40.6	-33.0	-592.9101438	2.59
90	E^N	-24.9	-66.0	-177.1	-179.1	22.7	0.0	-22.4	38.6	-38.7	-592.9094237	3.04
108	${}^{N}T_{\alpha}$	-23.9	-68.1	-175.6	-178.2	31.2	-11.9	-11.5	32.8	-40.5	-592.9099341	2.72
126	Eα	-20.6	-70.2	177.4	179.3	36.7	-22.7	0.5	23.9	-38.3	-592.9113770	1.82
144	αT^{β}	-15.0	-71.8	173.7	177.9	38.6	-31.2	12.2	13.0	-32.7	-592.9133203	0.60
162	E^{eta}	-8.6	-73.8	170.0	177.2	36.7	-36.7	22.5	1.0	-23.8	-592.9142724	0.00
180	$\beta_{\Gamma_{\gamma}}$	-1.1	-72.7	164.0	176.1	31.2	-38.6	30.7	-11.4	-12.5	-592.9142094	0.04
198	\mathbf{E}_{γ}	7.7	-69.7	156.7	175.2	22.7	-36.7	36.1	-22.9	0.1	-592.9129176	0.85
216	$_{\gamma} T^{\delta}$	13.6	-69.2	154.2	175.0	11.9	-31.2	38.2	-32.3	12.8	-592.9105793	2.32
234	E^δ	20.3	-70.0	151.9	175.2	0.0	-22.7	36.6	-38.4	24.0	-592.9077325	4.10
252	δT_N	23.1	-66.2	147.3	176.2	-11.9	-11.9	31.1	-40.4	32.6	-592.9054936	5.51
270	\mathbf{E}_N	24.0	-64.4	146.9	176.0	-22.7	0.0	22.5	-38.3	38.1	-592.9044028	6.19
288	$_{N}T^{lpha}$	22.9	-61.0	143.9	176.6	-31.2	11.9	11.5	-32.5	39.9	-592.9047248	5.99
306	Eα	20.4	-59.6	144.1	176.4	-36.7	22.7	-0.6	-23.6	37.8	-592.9062029	5.06
324	$^{lpha}\mathrm{T}_{eta}$	14.7	-59.5	146.3	175.9	-38.6	31.2	-12.3	-12.7	32.2	-592.9085607	3.58
342	E_{eta}	7.4	-58.8	147.9	176.1	-36.7	36.7	-22.8	-0.6	23.5	-592.9111014	1.99
360	βT^{γ}	0.2	-57.4	150.2	176.2	-31.2	38.6	-30.9	11.7	12.3	-592.9129655	0.82

Table S10 Torsion angles and electronic energies of Ac-*cis*-Pro-OMe along the pseudorotation phase angle optimized at the SMD M06-2X/6-31+G(d) level of theory in water^a

$P(^{\circ})^{b}$	Letter code ^c	ω'	ϕ	ψ	ω	χ_1	χ_2	X3	χ_4	X5	E^{d}	ΔE^{e}
0	$_{eta} \mathrm{T}^{\gamma}$	-173.2	-76.2	85.9	-18.7	-31.2	38.6	-31.1	12.3	11.7	-573.0362798	3.24
18	E^{γ}	-173.2	-80.7	80.5	-13.3	-22.7	36.7	-36.5	23.6	-0.6	-573.0382484	2.00
36	γT_{δ}	-174.6	-82.9	78.4	-10.8	-11.9	31.2	-38.5	32.8	-13.2	-573.0386145	1.77
54	Eδ	-178.0	-82.5	76.9	-9.1	0.0	22.7	-36.7	38.8	-24.5	-573.0377993	2.28
72	$\delta \mathrm{T}^N$	178.5	-81.8	76.5	-7.9	11.9	11.9	-31.1	40.8	-33.3	-573.0368375	2.89
90	\mathbf{E}^N	176.4	-81.6	76.1	-6.9	22.7	0.0	-22.6	38.9	-39.0	-573.0364287	3.14
108	${}^{N}T_{\alpha}$	176.3	-82.1	74.1	-4.9	31.2	-11.9	-11.8	33.1	-40.8	-573.0369604	2.81
126	Eα	177.8	-82.6	73.4	-4.8	36.7	-22.7	0.2	24.2	-38.6	-573.0379898	2.16
144	αT^{β}	-179.3	-83.2	71.5	-4.6	38.6	-31.2	11.8	13.2	-32.8	-573.0393114	1.33
162	E^{eta}	-176.2	-83.9	70.5	-4.8	36.7	-36.7	22.3	1.0	-23.9	-573.0408263	0.38
180	βT_{γ}	-173.2	-84.7	71.7	-6.3	31.2	-38.6	30.6	-11.4	-12.5	-573.0414363	0.00
198	${ m E}_{\gamma}$	-169.9	-84.9	74.2	-8.4	22.7	-36.7	36.0	-22.7	0.0	-573.0398938	0.97
216	$_{\gamma} T^{\delta}$	-168.8	-82.5	81.9	-14.2	11.9	-31.2	38.2	-32.1	12.6	-573.0362117	3.28
234	E^δ	-169.4	-76.8	91.4	-21.3	0.0	-22.7	36.6	-38.3	23.9	-573.0317591	6.07
252	δT_N	-170.1	-64.0	112.5	-29.4	-11.9	-11.9	31.1	-40.7	33.0	-573.0286630	8.02
270	E_N	-170.9	-57.2	117.8	-28.8	-22.7	0.0	22.6	-39.0	38.8	-573.0274411	8.78
288	NT^{α}	-171.6	-55.0	119.1	-28.4	-31.2	11.9	11.8	-33.1	40.5	-573.0274550	8.77
306	Eα	-172.9	-54.6	119.9	-28.4	-36.7	22.7	-0.3	-24.1	38.3	-573.0285347	8.10
324	$^{lpha}T_{eta}$	-174.2	-56.1	119.0	-28.9	-38.6	31.2	-12.0	-13.0	32.5	-573.0305822	6.81
342	E_{eta}	-172.5	-69.3	99.4	-27.3	-36.7	36.7	-22.7	-0.3	23.1	-573.0332008	5.17
360	$_{\beta} T^{\gamma}$	-173.2	-76.2	85.9	-18.7	-31.2	38.6	-31.1	12.3	11.7	-573.0362798	3.24

Table S11 Torsion angles and electronic energies of Ac-*trans*-Pro-NHMe along the pseudorotation phase angle optimized at the M06-2X/6-31+G(d) level of theory in the gas phase^{*a*}

$P(^{\circ})^{b}$	Letter code ^c	ω'	ϕ	ψ	ω	χ_1	χ_2	X3	χ_4	X5	E^{l}	ΔE^{e}
0	$_{\beta}T^{\gamma}$	10.3	-69.3	-27.9	7.4	-31.2	38.6	-30.9	11.7	12.2	-573.0349028	1.25
18	\mathbf{E}^{γ}	5.3	-75.7	-19.6	6.9	-22.7	36.7	-36.3	23.3	-0.4	-573.0350690	1.15
36	γT_{δ}	-0.3	-79.4	-11.0	3.6	-11.9	31.2	-38.3	32.7	-13.2	-573.0339928	1.82
54	Eδ	-4.5	-83.4	0.0	-1.6	0.0	22.7	-36.6	38.9	-24.5	-573.0325036	2.76
72	$\delta \mathrm{T}^N$	-8.1	-86.4	10.0	-6.6	11.9	11.9	-31.0	40.9	-33.4	-573.0312667	3.53
90	\mathbf{E}^N	-15.0	-83.5	14.3	-8.8	22.7	0.0	-22.4	39.0	-39.1	-573.0306181	3.94
108	${}^{N}T_{\alpha}$	-16.1	-84.3	15.6	-8.6	31.2	-11.9	-11.6	33.1	-40.9	-573.0310917	3.64
126	Eα	-14.4	-83.8	10.0	-4.0	36.7	-22.7	0.4	24.1	-38.7	-573.0326858	2.64
144	αT^{β}	-6.8	-87.2	5.4	-1.9	38.6	-31.2	12.1	13.2	-32.9	-573.0347487	1.35
162	E^{eta}	0.3	-87.5	-0.2	0.3	36.7	-36.7	22.5	1.0	-23.9	-573.0364367	0.29
180	βT_{γ}	9.3	-88.8	-5.6	1.3	31.2	-38.6	30.8	-11.5	-12.5	-573.0368966	0.00
198	\mathbf{E}_{γ}	14.7	-84.4	-16.0	6.8	22.7	-36.7	36.1	-22.9	0.1	-573.0359375	0.60
216	$_{\gamma} T^{\delta}$	19.5	-78.7	-26.5	10.5	11.9	-31.2	38.2	-32.4	12.9	-573.0337383	1.98
234	E^δ	25.0	-72.9	-34.1	12.5	0.0	-22.7	36.6	-38.7	24.2	-573.0312908	3.52
252	$\delta \mathbf{T}_N$	26.4	-70.7	-33.5	4.8	-11.9	-11.9	31.1	-40.6	32.8	-573.0286240	5.19
270	\mathbf{E}_N	26.9	-66.8	-38.0	11.1	-22.7	0.0	22.6	-38.7	38.4	-573.0274560	5.92
288	$_{N}T^{\alpha}$	25.6	-65.1	-37.8	10.3	-31.2	11.9	11.6	-32.7	40.0	-573.0273836	5.97
306	Eα	23.0	-64.9	-37.1	10.3	-36.7	22.7	-0.5	-23.7	37.8	-573.0287176	5.13
324	$^{lpha}T_{eta}$	19.6	-65.4	-35.3	10.2	-38.6	31.2	-12.2	-12.7	32.2	-573.0310005	3.70
342	E_{eta}	14.9	-66.3	-32.8	9.9	-36.7	36.7	-22.7	-0.6	23.5	-573.0333960	2.20
360	βT^{γ}	10.3	-69.3	-27.9	7.4	-31.2	38.6	-30.9	11.7	12.2	-573.0349028	1.25

Table S12 Torsion angles and electronic energies of Ac-*cis*-Pro-NHMe along the pseudorotation phase angle optimized at the M06-2X/6-31+G(d) level of theory in the gas phase^{*a*}

$P(^{\circ})^{b}$	Letter code ^c	ω'	ϕ	Ψ	ω	χ_1	χ_2	X3	χ_4	X5	E^{d}	ΔE^{e}
0	$_{eta} \mathrm{T}^{\gamma}$	-178.8	-53.7	142.9	-5.8	-31.2	38.6	-30.7	11.5	12.4	-573.0639490	0.00
18	\mathbf{E}^{γ}	177.2	-55.5	144.5	-5.0	-22.7	36.7	-36.0	23.0	-0.2	-573.0639139	0.02
36	γTs	169.9	-54.2	146.8	-4.9	-11.9	31.2	-38.1	32.4	-12.9	-573.0628628	0.68
54	Eδ	167.3	-57.2	151.8	-4.4	0.0	22.7	-36.4	38.5	-24.2	-573.0608506	1.94
72	$\delta \mathrm{T}^N$	165.8	-60.6	162.0	-1.1	11.9	11.9	-30.8	40.5	-32.9	-573.0586963	3.30
90	E^N	164.4	-64.3	170.3	2.0	22.7	0.0	-22.3	38.6	-38.6	-573.0573853	4.12
108	${}^{N}T_{\alpha}$	164.8	-66.7	172.5	1.6	31.2	-11.9	-11.4	32.8	-40.4	-573.0576251	3.97
126	Eα	165.6	-66.6	169.8	1.0	36.7	-22.7	0.5	23.8	-38.2	-573.0592460	2.95
144	αT^{β}	168.0	-64.7	158.8	-1.5	38.6	-31.2	12.1	12.9	-32.5	-573.0615067	1.53
162	E^{eta}	171.4	-63.9	155.5	-1.6	36.7	-36.7	22.4	0.9	-23.7	-573.0632355	0.45
180	βT_{γ}	175.5	-61.7	149.2	-4.6	31.2	-38.6	30.6	-11.4	-12.4	-573.0638671	0.05
198	\mathbf{E}_{γ}	179.4	-59.5	145.6	-6.4	22.7	-36.7	36.0	-22.9	0.2	-573.0634447	0.32
216	$_{\gamma} T^{\delta}$	-174.8	-60.1	144.8	-6.9	11.9	-31.2	38.0	-32.4	12.9	-573.0615962	1.48
234	E^δ	-171.1	-58.8	144.7	-5.7	0.0	-22.7	36.4	-38.6	24.2	-573.0594362	2.83
252	$\delta \mathbf{T}_N$	-168.2	-57.8	143.3	-6.4	-11.9	-11.9	31.0	-40.6	32.9	-573.0577047	3.92
270	E_N	-168.1	-55.1	141.9	-6.6	-22.7	0.0	22.4	-38.7	38.6	-573.0567692	4.51
288	$_{N}T^{lpha}$	-168.0	-53.8	140.7	-6.8	-31.2	11.9	11.6	-32.8	40.3	-573.0569059	4.42
306	Eα	-168.9	-53.3	140.2	-6.8	-36.7	22.7	-0.4	-23.9	38.1	-573.0580036	3.73
324	$^{lpha}\mathrm{T}_{eta}$	-171.1	-53.4	141.3	-6.9	-38.6	31.2	-12.1	-12.9	32.4	-573.0600688	2.43
342	E_{eta}	-174.6	-52.8	141.6	-6.5	-36.7	36.7	-22.5	-0.9	23.7	-573.0623621	1.00
360	$_{\beta} T^{\gamma}$	-178.8	-53.7	142.9	-5.8	-31.2	38.6	-30.7	11.5	12.4	-573.0639490	0.00

Table S13 Torsion angles and electronic energies of Ac-*trans*-Pro-NHMe along the pseudorotation phase angle optimized at the SMD M06-2X/6-31+G(d) level of theory in water^a

$P(^{\circ})^{b}$	Letter code ^c	ω'	ϕ	Ψ	ω	χ_1	χ_2	X3	χ_4	X5	E^{d}	ΔE^{e}
0	$_{\beta}T^{\gamma}$	2.2	-57.8	-32.8	6.4	-31.2	38.6	-30.8	11.6	12.3	-573.0598503	1.87
18	\mathbf{E}^{γ}	-5.7	-57.4	-32.3	4.8	-22.7	36.7	-36.1	23.0	-0.2	-573.0605220	1.45
36	γTs	-5.9	-73.5	-18.3	4.9	-11.9	31.2	-38.2	32.5	-13.0	-573.0603833	1.53
54	Eδ	-10.2	-76.0	-10.9	3.1	0.0	22.7	-36.4	38.6	-24.3	-573.0588159	2.52
72	$\delta \mathrm{T}^N$	-10.9	-81.3	-1.6	0.1	11.9	11.9	-30.8	40.7	-33.2	-573.0571562	3.56
90	E^N	-12.3	-83.6	7.1	-3.1	22.7	0.0	-22.4	38.9	-38.9	-573.0561252	4.20
108	${}^{N}T_{\alpha}$	-13.0	-84.3	6.1	-0.9	31.2	-11.9	-11.6	33.1	-40.7	-573.0568472	3.75
126	Eα	-11.2	-85.1	2.4	1.8	36.7	-22.7	0.4	24.2	-38.5	-573.0590832	2.35
144	αT^{β}	-7.4	-84.5	0.4	0.9	38.6	-31.2	12.0	13.3	-32.8	-573.0615618	0.79
162	E^{eta}	-0.7	-86.7	-4.0	1.3	36.7	-36.7	22.3	1.2	-23.9	-573.0628262	0.00
180	βT_{γ}	3.3	-80.8	-14.6	3.1	31.2	-38.6	30.5	-11.2	-12.6	-573.0626322	0.12
198	\mathbf{E}_{γ}	9.6	-78.2	-22.1	4.7	22.7	-36.7	35.8	-22.7	0.0	-573.0612270	1.00
216	$_{\gamma} T^{\delta}$	15.7	-71.2	-31.4	8.2	11.9	-31.2	38.1	-32.3	12.8	-573.0584760	2.73
234	E^δ	20.1	-70.1	-33.3	8.6	0.0	-22.7	36.5	-38.3	24.0	-573.0554532	4.63
252	$\delta \mathbf{T}_N$	23.5	-66.9	-30.3	11.8	-11.9	-11.9	31.1	-40.3	32.6	-573.0526409	6.39
270	\mathbf{E}_N	24.2	-63.9	-37.0	8.4	-22.7	0.0	22.6	-38.4	38.1	-573.0512442	7.27
288	$_{N}T^{lpha}$	23.5	-62.8	-34.3	9.9	-31.2	11.9	11.6	-32.4	39.7	-573.0513047	7.23
306	Eα	20.0	-61.1	-34.9	9.6	-36.7	22.7	-0.5	-23.5	37.6	-573.0528362	6.27
324	$^{lpha}\mathrm{T}_{eta}$	14.5	-59.2	-34.9	9.4	-38.6	31.2	-12.2	-12.7	32.2	-573.0552399	4.76
342	E_{eta}	10.3	-60.5	-30.9	8.7	-36.7	36.7	-22.7	-0.6	23.4	-573.0580599	2.99
360	$_{\beta}T^{\gamma}$	2.2	-57.8	-32.8	6.4	-31.2	38.6	-30.8	11.6	12.3	-573.0598503	1.87

Table S14 Torsion angles and electronic energies of Ac-*cis*-Pro-NHMe along the pseudorotation phase angle optimized at the SMD M06-2X/6-31+G(d) level of theory in water^a

		Conf.	Gas phase			Water		
			$E_{\rm e}$	H	G	$E_{ m e}$	Н	G
Ac-Pro-OH	trans	<i>t</i> Cu	-553.6123763	-553.425482	-553.473668	-553.636031	-553.449898	-553.498819
		<i>t</i> -ts1	-553.6097807	-553.423534	-553.470639	-553.6319574	-553.446771	-553.495060
		<i>t</i> Cd	-553.6149917	-553.428328	-553.476807	-553.636318	-553.450394	-553.499732
		<i>t</i> -ts2	-553.6004668	-553.414793	-553.462399	-553.6300675	-553.444824	-553.495236
	cis	<i>c</i> Fu	-553.6078574	-553.421258	-553.470858	-553.6338243	-553.447544	-553.496884
		c-ts1	-553.6050557	-553.419355	-553.467855	-553.6309157	-553.446070	-553.494519
		<i>c</i> Fd	-553.6090174	-553.422505	-553.472676	-553.6350335	-553.449082	-553.498439
		c-ts2	-553.5997495	-553.414057	-553.462486	-553.6248252	-553.439713	-553.487381
Ac-Pro-OMe	trans	<i>t</i> Fu	-592.8945002	-592.679248	-592.733466	-592.9154308	-592.700661	-592.753525
		<i>t</i> -ts1	-592.8919236	-592.677289	-592.729298	-592.9113468	-592.697289	-592.749322
		tFd	-592.8956178	-592.680241	-592.733537	-592.9157064	-592.700876	-592.754480
		<i>t</i> -ts2	-592.8871167	-592.672662	-592.724322	-592.9095434	-592.695105	-592.746609
	cis	<i>c</i> Fu	-592.8923434	-592.676979	-592.730512	-592.9132199	-592.698065	-592.750580
		<i>c</i> -ts1	-592.8893705	-592.675271	-592.730587	-592.9103914	-592.696549	-592.748453
		<i>c</i> Fd	-592.8933314	-592.678231	-592.733191	-592.9143729	-592.699586	-592.753316
		c-ts2	-592.8845449	-592.670155	-592.722469	-592.9044028	-592.690625	-592.742567
Ac-Pro-NHMe	trans	<i>t</i> Cu	-573.0386639	-572.810990	-572.864711	-573.0641152	-572.837178	-572.890844
		<i>t</i> -ts1	-573.0370793	-572.810205	-572.862283	-573.0595836	-572.833376	-572.886032
		<i>t</i> Cd	-573.0414786	-572.814025	-572.867273	-573.0639108	-572.836787	-572.890516
		<i>t</i> -ts2	-573.0274411	-572.801072	-572.853565	-573.0580929	-572.831447	-572.883385
	cis	cAu	-573.0351368	-572.807944	-572.862081	-573.0607181	-572.833680	-572.886562
		c-ts1	-573.0317047	-572.805245	-572.858695	-573.0581416	-572.831717	-572.884510
		cAd	-573.0369309	-572.809757	-572.864140	-573.062979	-572.836249	-572.890579
		c-ts2	-573.027456	-572.801366	-572.854225	-573.0512442	-572.825521	-572.878458

Table S15 Absolute electronic energies, enthalpies, and Gibbs free energies of local minima and transition states for puckering transitions of Ac-Pro-OH, Ac-Pro-OMe, and Ac-Pro-NHMe at M06-2X/6-31+G(d) level of theory in the gas phase and SMD M06-2X/6-31+G(d) level of theory in water^{*a*}

^a Optimized torsion angles are listed in Tables 2 and 4. Absolute electronic energies, enthalpies, and Gibbs free energies are in hartrees.

		Conf	CCSD(T)		MP2			<u> </u>
		Com.	CBS-limit	aDZ	aDZ	aTZ	aOZ	CBS-limit
Ac-Pro-OH	trans	<i>t</i> Cu	-553.269239	-552.523240	-552.385853	-552.864522	-553.019072	-553,131852
		<i>t</i> -ts1	-553.266410	-552.520499	-552.382846	-552.861299	-553.015924	-553.128757
		tCd	-553.271407	-552.525677	-552.388488	-552.867030	-553.021498	-553.134218
		t-ts2	-553.258086	-552.512312	-552.374102	-552.852620	-553.007127	-553.119875
	cis	<i>c</i> Fu	-553.263236	-552.518179	-552.381414	-552.859470	-553.013830	-553.126472
		c-ts1	-553.260841	-552.515885	-552.378566	-552.856412	-553.010835	-553.123522
		<i>c</i> Fd	-553.264511	-552.519453	-552.382721	-552.860782	-553.015140	-553.127779
		c-ts2	-553.255890	-552.511280	-552.373877	-552.851437	-553.005825	-553.118487
Ac-Pro-OMe	trans	<i>t</i> Fu	-592.513356	-591.710596	-591.553641	-592.070565	-592.235814	-592.356401
		<i>t</i> -ts1	-592.510792	-591.708307	-591.550728	-592.067275	-592.232583	-592.353214
		tFd	-592.514154	-591.711541	-591.554601	-592.071482	-592.236671	-592.357214
		t-ts2	-592.506509	-591.704006	-591.546537	-592.063078	-592.228400	-592.349040
	cis	cFu	-592.510987	-591.708397	-591.551726	-592.068573	-592.233769	-592.354317
		c-ts1	-592.508396	-591.705836	-591.548511	-592.065163	-592.230454	-592.351072
		<i>c</i> Fd	-592.512133	-591.709505	-591.552808	-592.069678	-592.234882	-592.355436
		c-ts2	-592.503722	-591.701620	-591.544304	-592.060725	-592.225884	-592.346406
Ac-Pro-NHMe	trans	<i>t</i> Cu	-572.656616	-571.876922	-571.715212	-572.217589	-572.377913	-572.494906
		<i>t</i> -ts1	-572.654842	-571.875378	-571.713503	-572.215646	-572.375972	-572.492967
		<i>t</i> Cd	-572.658947	-571.879494	-571.717933	-572.220204	-572.380450	-572.497386
		<i>t</i> -ts2	-572.645680	-571.867081	-571.704516	-572.206063	-572.366233	-572.483114
	cis	cAu	-572.652108	-571.873390	-571.712393	-572.214348	-572.374352	-572.491111
		c-ts1	-572.648927	-571.869865	-571.708431	-572.210352	-572.370574	-572.487492
		cAd	-572.653722	-571.875012	-571.714124	-572.216053	-572.376067	-572.492834
		c-ts2	-572.644742	-571.866495	-571.704675	-572.206229	-572.366192	-572.482921

Table S16 Absolute single-point energies of local minima and transition states for puckering transitions of Ac-Pro-OH, Ac-Pro-OMe, and Ac-Pro-NHMe at CCSD(T) and MP2 levels of theory in the gas phase^{*a*}

^a Optimized torsion angles are listed in Table 2. Absolute single-point energies are in hartrees.

Table S17 Absolute single-point energies of local minima and transition states for puckering transitions of Ac-Pro-OH, Ac-Pro-OMe, and Ac-Pro-NHMe at DSD-PBEP86-D3BJ and M06-2X levels of theory in the gas $phase^{a}$

		Conf.	DSD-PBEP86-	D3BJ		M06-2X		
			ΤZ	dTZ	dQZ	TZ	dTZ	dQZ
Ac-Pro-OH	trans	<i>t</i> Cu	-553.076067	-553.073735	-553.193264	-553.815523	-553.822979	-553.870863
		<i>t</i> -ts1	-553.072907	-553.070678	-553.190235	-553.812687	-553.820278	-553.868151
		<i>t</i> Cd	-553.078360	-553.076029	-553.195478	-553.818225	-553.825581	-553.873429
		<i>t</i> -ts2	-553.064594	-553.062047	-553.181742	-553.803917	-553.811218	-553.859233
	cis	<i>c</i> Fu	-553.070142	-553.068280	-553.187545	-553.810302	-553.817932	-553.865578
		c-ts1	-553.067369	-553.065456	-553.184757	-553.807616	-553.815186	-553.862863
		cFd	-553.071452	-553.069572	-553.188774	-553.811673	-553.819220	-553.866880
		c-ts2	-553.062167	-553.060252	-553.179594	-553.802200	-553.809780	-553.857518
Ac-Pro-OMe	trans	<i>t</i> Fu	-592.306064	-592.302253	-592.431192	-593.106341	-593.114261	-593.165388
		<i>t</i> -ts1	-592.303111	-592.299237	-592.428233	-593.103710	-593.111598	-593.162734
		<i>t</i> Fd	-592.307024	-592.303145	-592.432014	-593.107554	-593.115397	-593.166476
		<i>t</i> -ts2	-592.298811	-592.294904	-592.423942	-593.098900	-593.106802	-593.157988
	cis	<i>c</i> Fu	-592.303974	-592.300056	-592.429017	-593.104341	-593.112274	-593.163350
		c-ts1	-592.300948	-592.296936	-592.425967	-593.101400	-593.109251	-593.160374
		<i>c</i> Fd	-592.305101	-592.301156	-592.430074	-593.105481	-593.113338	-593.164421
		c-ts2	-592.296183	-592.292144	-592.421190	-593.096514	-593.104364	-593.155515
Ac-Pro-NHMe	trans	<i>t</i> Cu	-572.457140	-572.449539	-572.578302	-573.242168	-573.248972	-573.299865
		<i>t</i> -ts1	-572.455188	-572.447666	-572.576434	-573.240614	-573.247433	-573.298331
		<i>t</i> Cd	-572.459608	-572.451969	-572.580690	-573.245215	-573.251869	-573.302743
		t-ts2	-572.445623	-572.438220	-572.566913	-573.230902	-573.237741	-573.288685
	cis	cAu	-572.452799	-572.445660	-572.574293	-573.238151	-573.245299	-573.296155
		c-ts1	-572.449216	-572.442045	-572.570805	-573.234895	-573.242042	-573.292934
		cAd	-572.454486	-572.447315	-572.575920	-573.239952	-573.247007	-573.297861
		c-ts2	-572.445082	-572.437668	-572.566221	-573.230605	-573.237539	-573.288308

^a Optimized torsion angles are listed in Table 2. Absolute single-point energies are in hartrees.

		0 0			MDO			
		Conf.	CCSD(T)	DZ	MP2	T 7	07	CD C II II
			CBS-limit	aDZ	aDZ	aTZ	aQZ	CBS-limit
Ac-Pro-OH	trans	<i>t</i> Cu	-553.263637	-552.519191	-552.382515	-552.860159	-553.014404	-553.126961
		<i>t</i> -ts1	-553.261267	-552.516955	-552.379553	-552.856994	-553.011279	-553.123865
		<i>t</i> Cd	-553.264739	-552.520361	-552.383647	-552.861279	-553.015492	-553.128025
		<i>t</i> -ts2	-553.257794	-552.513267	-552.375828	-552.853375	-553.007722	-553.120354
	cis	cFu	-553.261222	-552.516987	-552.380419	-552.857992	-553.012156	-553.124654
		c-ts1	-553.259178	-552.515077	-552.377990	-552.855328	-553.009550	-553.122091
		cFd	-553.262912	-552.518652	-552.382168	-552.859739	-553.013919	-553.126428
		c-ts2	-553.254182	-552.510340	-552.373103	-552.850341	-553.004471	-553.116945
Ac-Pro-OMe	trans	<i>t</i> Fu	-592.511606	-591.709634	-591.552917	-592.069359	-592.234430	-592.354888
		<i>t</i> -ts1	-592.509198	-591.707314	-591.549890	-592.066069	-592.231242	-592.351773
		tFd	-592.512598	-591.710691	-591.553932	-592.070368	-592.235406	-592.355839
		t-ts2	-592.505542	-591.703528	-591.546132	-592.062416	-592.227603	-592.348145
	cis	cFu	-592.509314	-591.707518	-591.550984	-592.067333	-592.232357	-592.352781
		c-ts1	-592.506965	-591.705288	-591.548191	-592.064324	-592.229404	-592.349868
		cFd	-592.510638	-591.708836	-591.552301	-592.068643	-592.233674	-592.354102
		c-ts2	-592.502280	-591.700975	-591.543757	-592.059725	-592.224685	-592.345062
Ac-Pro-NHMe	trans	<i>t</i> Cu	-572.648635	-571.870258	-571.708956	-572.210499	-572.370543	-572.487332
		<i>t</i> -ts1	-572.646952	-571.868762	-571.706696	-572.208013	-572.368080	-572.484886
		<i>t</i> Cd	-572.649917	-571.871636	-571.710245	-572.211825	-572.371793	-572.488526
		t-ts2	-572.642004	-571.863590	-571.701622	-572.203043	-572.363180	-572.480037
	cis	cAu	-572.649736	-571.871745	-571.711021	-572.212493	-572.372355	-572.489012
		c-ts1	-572.646893	-571.868640	-571.707414	-572.208860	-572.368889	-572.485667
		cAd	-572.651641	-571.873710	-571.713130	-572.214577	-572.374419	-572.491061
		c-ts2	-572.642714	-571.865120	-571.703656	-572.204814	-572.364629	-572.481250

Table S18 Absolute single-point energies of local minima and transition states for puckering transitions of Ac-Pro-OH, Ac-Pro-OMe, and Ac-Pro-NHMe at CCSD(T) and MP2 levels of theory in water^{*a*}

^a Optimized torsion angles are listed in Table 4. Absolute single-point energies are in hartrees.

		Conf.	DSD-PBEP86-1	D3BJ		M06-2X		
		2 5111	TZ	dTZ	dQZ	TZ	dTZ	dQZ
Ac-Pro-OH	trans	<i>t</i> Cu	-553.070237	-553.068691	-553.187919	-553.809723	-553.817490	-553.865192
		<i>t</i> -ts1	-553.067550	-553.065863	-553.185166	-553.807480	-553.815151	-553.862872
		<i>t</i> Cd	-553.071502	-553.069824	-553.188963	-553.811241	-553.818842	-553.866486
		t-ts2	-553.063923	-553.062377	-553.181764	-553.803548	-553.811400	-553.859170
	cis	<i>c</i> Fu	-553.068224	-553.066429	-553.185628	-553.807930	-553.815584	-553.863176
		c-ts1	-553.065735	-553.063916	-553.183157	-553.805580	-553.813182	-553.860803
		cFd	-553.069916	-553.068136	-553.187280	-553.809645	-553.817226	-553.864843
		c-ts2	-553.060581	-553.058753	-553.178027	-553.800295	-553.807870	-553.855579
Ac-Pro-OMe	trans	<i>t</i> Fu	-592.304336	-592.300616	-592.429563	-593.104026	-593.111999	-593.163142
		<i>t</i> -ts1	-592.301563	-592.297750	-592.426747	-593.101687	-593.109609	-593.160758
		<i>t</i> Fd	-592.305467	-592.301656	-592.430524	-593.105459	-593.113322	-593.164401
		t-ts2	-592.297839	-592.294119	-592.423205	-593.097618	-593.105679	-593.156880
	cis	cFu	-592.302313	-592.298432	-592.427372	-593.102144	-593.110060	-593.161124
		c-ts1	-592.299558	-592.295625	-592.424626	-593.099540	-593.107409	-593.158502
		<i>c</i> Fd	-592.303651	-592.299735	-592.428639	-593.103531	-593.111382	-593.162447
		c-ts2	-592.294756	-592.290805	-592.419804	-593.094559	-593.102393	-593.153540
Ac-Pro-NHMe	trans	<i>t</i> Cu	-572.448745	-572.441779	-572.570561	-573.233537	-573.240648	-573.291759
		<i>t</i> -ts1	-572.446684	-572.439688	-572.568500	-573.231889	-573.238978	-573.290084
		<i>t</i> Cd	-572.450195	-572.443134	-572.571820	-573.235251	-573.242259	-573.293287
		<i>t</i> -ts2	-572.441705	-572.434714	-572.563641	-573.226550	-573.233741	-573.284913
	cis	cAu	-572.450339	-572.443410	-572.572041	-573.235185	-573.242456	-573.293312
		c-ts1	-572.447091	-572.440160	-572.568906	-573.232191	-573.239491	-573.290401
		cAd	-572.452365	-572.445378	-572.573954	-573.237236	-573.244405	-573.295240
		c-ts2	-572.443131	-572.435840	-572.564400	-573.228104	-573.235103	-573.285870

Table S19 Absolute single-point energies of local minima and transition states for puckering transitions of Ac-Pro-OH, Ac-Pro-OMe, and Ac-Pro-NHMe at DSD-PBEP86-D3BJ and M06-2X levels of theory in water^a

^a Optimized torsion angles are listed in Table 4. Absolute single-point energies are in hartrees.

Fig. S1 Puckering transitions of local minima and transition states of Ac-Pro-OH with *trans* and *cis* prolyl peptide bonds in (a) the gas phase and (b) water. For clarity, all hydrogen atoms are omitted. All H-bonds are represented by dotted lines.

Fig. S2 Puckering transitions of local minima and transition states of Ac-Pro-OMe with *trans* and *cis* prolyl peptide bonds in (a) the gas phase and (b) water. For clarity, all hydrogen atoms are omitted. All H-bonds are represented by dotted lines.

	Conf. ^b	ω'	φ	ψ	ω	χ_1	X 2	χз	χ4	χ5	P^{c}	$\chi_{ m m}{}^d$	$\Delta E_{\rm e}^{e}$
Нур	<i>t</i> Fu-t	179.2	-54.6	146.8	175.7	-27.7	38.7	-34.4	17.8	6.1	8.9	39.0	0.00
	<i>t</i> -ts1	169.6	-64.8	168.3	176.4	21.5	-6.7	-10.4	25.6	-29.7	103.3	29.3	3.26
	tFd-g	174.7	-59.7	153.6	177.1	29.5	-37.3	30.3	-12.2	-10.9	181.1	37.2	1.06
hyp	tFu-gm	-179.5	-53.2	143.8	176.7	-28.9	39.1	-33.7	16.2	8.0	6.2	39.1	1.79
	<i>t</i> -ts1	170.1	-63.0	163.3	177.0	14.7	1.0	-16.3	27.4	-26.7	87.9	27.9	4.04
	<i>t</i> Fd-gm	175.1	-55.1	142.8	176.4	25.2	-36.5	33.3	-18.6	-4.1	191.5	37.1	0.00
Flp	<i>t</i> Fu	179.4	-55.0	147.3	175.7	-26.1	36.8	-32.7	16.6	6.0	8.7	37.0	0.00
	<i>t</i> -ts1	167.7	-64.7	170.3	178.1	23.6	-8.1	-10.4	27.0	-32.0	104.9	31.5	3.02
	<i>t</i> Fd	173.8	-59.3	153.0	177.1	30.0	-36.8	28.9	-10.1	-12.6	178.2	36.6	2.15
flp	<i>t</i> Fu	-179.6	-52.8	142.9	177.1	-28.6	38.7	-33.1	15.3	8.4	5.5	38.6	2.51
	<i>t</i> -ts1	170.6	-62.8	164.8	176.5	10.6	5.8	-19.8	28.4	-24.8	78.2	28.0	3.68
	tFd	177.3	-67.4	172.1	178.3	30.7	-36.8	28.2	-8.7	-13.9	176.0	36.7	0.00
mep	<i>t</i> Fu	179.5	-54.4	146.2	176.0	-28.6	38.9	-34.0	17.1	7.2	7.4	39.1	0.62
	<i>t</i> -ts1	169.5	-63.0	164.6	175.5	12.8	3.6	-18.4	28.5	-26.0	82.8	28.3	3.27
	tFd	175.5	-61.5	155.9	176.9	30.0	-37.7	30.7	-12.6	-10.9	181.3	37.6	0.00
Mep	<i>t</i> Fu	179.7	-52.0	143.6	176.9	-29.7	39.6	-34.0	16.2	8.4	5.7	39.7	0.00
	<i>t</i> -ts1	169.4	-62.9	162.9	177.0	18.5	-3.7	-12.3	25.6	-27.8	97.8	27.8	2.79
	tFd	-177.6	-67.2	168.4	178.4	24.2	-34.2	30.8	-16.9	-4.6	190.4	34.7	1.21
Clp	<i>t</i> Fu	177.0	-54.2	148.0	176.0	-25.0	37.1	-34.4	19.5	3.4	12.8	37.8	0.00
	<i>t</i> -ts1	167.5	-64.5	168.3	176.9	24.3	-9.5	-8.7	25.6	-31.8	108.0	31.1	3.66
	tFd	175.4	-59.9	155.5	176.1	30.6	-39.9	33.2	-14.1	-10.4	182.9	39.7	1.00
clp	<i>t</i> Fu	-179.3	-56.7	149.1	176.7	-28.7	40.8	-36.5	18.8	6.2	9.3	41.1	0.98
	<i>t</i> -ts1	168.2	-62.9	166.0	176.9	16.5	1.1	-18.0	30.3	-29.8	88.2	31.0	3.58
	<i>t</i> Fd	-178.5	-74.4	-173.5	-179.2	30.0	-36.9	29.0	-10.4	-12.3	178.5	36.7	0.00
mpc	<i>t</i> Fu-t	177.4	-54.8	148.5	175.8	-25.2	37.0	-34.3	19.7	3.5	12.7	37.9	0.91
	<i>t</i> -ts1	167.4	-64.3	168.2	177.1	22.2	-6.6	-11.2	26.9	-31.2	102.7	30.7	3.79
	tFd-g	175.8	-60.7	156.1	176.4	30.4	-39.1	32.4	-13.7	-10.5	182.4	39.0	0.00
Mpc	<i>t</i> Fu-gm	-179.4	-56.0	148.7	176.4	-29.0	40.0	-35.2	17.6	7.2	7.7	40.2	0.00
	<i>t</i> -ts1	168.7	-63.2	163.1	177.4	19.6	-4.4	-12.3	26.4	-29.3	98.9	29.1	3.13
	<i>t</i> Fd-gm	-177.9	-66.4	167.2	177.5	23.3	-35.6	33.8	-20.5	-1.7	195.2	36.8	0.58
mop	<i>t</i> Fu-t	-179.8	-55.8	147.1	176.8	-27.4	38.7	-34.5	18.0	5.8	15.2	36.8	1.35
	<i>t</i> -ts1	169.6	-63.1	164.3	177.8	15.0	1.0	-16.6	27.9	-27.2	88.0	28.4	3.22
	tFd-g	177.3	-75.2	-166.6	178.0	37.9	-42.2	30.1	-6.3	-20.0	170.5	42.7	0.00

Table S20 Torsion angles and relative electronic energies of Ac-*trans*-X-OMe optimized at the SMD M06-2X/6-31+G(d) level of theory in water^a

^{*a*} Torsion angles (°) are defined in Fig. 1c. ^{*b*} The structures of local minima for Ac-*trans*-X-OMe optimized at the SMD M06-2X/6-31+G(d) level of theory were taken from ref. 42. ^{*c*} The phase angle of pseudorotation in degrees. ^{*d*} The amplitude of pseudorotation in degrees. ^{*e*} Relative electronic energies in in kcal mol⁻¹.

	Conf.	Ee	Н	G	$E_{e,sp}^{b}$	$E_{e,sp}^{c}$	$E_{\mathrm{e,sp}}{}^d$
Нур	<i>t</i> Fu-t	-668.117274	-667.897081	-667.952613	-668.084054	-667.585163	-668.395889
	<i>t</i> -ts1	-668.112083	-667.892914	-667.947386	-668.080734	-667.581611	-668.392556
	tFd-g	-668.115585	-667.894821	-667.949964	-668.083762	-667.584605	-668.395709
hyp	tFu-gm	-668.115420	-667.894791	-667.950885	-668.082782	-667.583933	-668.394780
	t-ts1	-668.111839	-667.892422	-667.947429	-668.081253	-667.581661	-668.392948
	<i>t</i> Fd-gm	-668.118267	-667.897777	-667.952510	-668.091894	-667.591791	-668.402914
Flp	tFu	-692.131626	-691.923264	-691.978182	-692.106154	-691.601089	-692.423235
	<i>t</i> -ts1	-692.126806	-691.919559	-691.973710	-692.103362	-691.597849	-692.420344
	<i>t</i> Fd	-692.128201	-691.919718	-691.974503	-692.105449	-691.600030	-692.422458
flp	<i>t</i> Fu	-692.127768	-691.919460	-691.975515	-692.103323	-691.598373	-692.420464
	<i>t</i> -ts1	-692.125891	-691.918243	-691.970900	-692.102035	-691.596538	-692.418925
	<i>t</i> Fd	-692.131762	-691.923661	-691.978983	-692.103907	-691.598378	-692.420773
mep	<i>t</i> Fu	-632.210201	-631.967267	-632.023348	-632.188374	-631.688706	-632.476437
	<i>t</i> -ts1	-632.205986	-631.964078	-632.018414	-632.185496	-631.685531	-632.473528
	<i>t</i> Fd	-632.211194	-631.968526	-632.025330	-632.190063	-631.690170	-632.478131
Mep	<i>t</i> Fu	-632.211013	-631.968238	-632.025003	-632.188756	-631.689245	-632.476928
	<i>t</i> -ts1	-632.206562	-631.964503	-632.019446	-632.186180	-631.686076	-632.474177
	<i>t</i> Fd	-632.209087	-631.966246	-632.022203	-632.187201	-631.687309	-632.475351
Clp	<i>t</i> Fu	-1052.488723	-1052.281392	-1052.338190	-1052.463789	-1051.747087	-1052.781674
	<i>t</i> -ts1	-1052.482895	-1052.276574	-1052.331644	-1052.459788	-1051.742813	-1052.777672
	<i>t</i> Fd	-1052.487125	-1052.279549	-1052.335842	-1052.464215	-1051.747248	-1052.781957
clp	<i>t</i> Fu	-1052.486784	-1052.279651	-1052.336616	-1052.462269	-1051.745791	-1052.780152
	<i>t</i> -ts1	-1052.482663	-1052.276250	-1052.330163	-1052.459263	-1051.742358	-1052.777021
	<i>t</i> Fd	-1052.488501	-1052.281415	-1052.337653	-1052.460290	-1051.743111	-1052.778125
mpc	<i>t</i> Fu-t	-991.068710	-990.852812	-990.911533	-991.042782	-990.343028	-991.362708
	<i>t</i> -ts1	-991.064116	-990.849036	-990.904909	-991.039965	-990.339994	-991.359986
	tFd-g	-991.070121	-990.854079	-990.911430	-991.045574	-990.345162	-991.365159
Mpc	tFu-gm	-991.069816	-990.853699	-990.911382	-991.044042	-990.343964	-991.363670
	t-ts1	-991.064821	-990.849417	-990.904481	-991.041511	-990.340897	-991.360987
	<i>t</i> Fd-gm	-991.068893	-990.853751	-990.907749	-991.045273	-990.344130	-991.364168
mop	<i>t</i> Fu-t	-707.394243	-707.144863	-707.204039	-707.367862	-706.825234	-707.692460
-	<i>t</i> -ts1	-707.391256	-707.143073	-707.200460	-707.365987	-706.823021	-707.690513
	tFd-g	-707.396388	-707.148467	-707.204472	-707.366532	-706.822970	-707.690539

Table S21 Absolute electronic energies, enthalpies, Gibbs free energies, and single-point energies of local minima and transition states for puckering transitions of Ac-*trans*-X-OMe optimized at the SMD M06-2X/6-31+G(d) level of theory in water^a

^{*a*} Optimized torsion angles are listed in Table S20 (ESI[‡]). Absolute electronic energies, enthalpies, Gibbs free energies, and single-point energies are in hartrees. ^{*b*} Single-point energies at the M06-2X/6-31+G(d) level of theory. ^{*c*} Single-point energies at the DSD-PBEP86-D3BJ/def2-QZVP level of theory. ^{*c*} Single-point energies at the M06-2X/def2-QZVP level of theory.

Cartesian coordinates of local minima and transition states for puckering transitions of Ac-Pro-OH, Ac-Pro-OMe, and Ac-Pro-NHMe optimized at M06-2X/6-31+G(d) level of theory in the gas phase and SMD M06-2X/6-31+G(d) level of theory in water:

A. Gas phase			Η	-2.596941	0.942859	0.589126	
(1) A	c-Pro-OH			Н	-1.562487	1.498921	1.914539
(_) -				Η	-1.657654	2.612843	-0.792633
(a) <i>t</i> C	Cu			Η	-0.639414	3.127292	0.551748
N	0 595215	0 272503	-0.001508	0	-0.620507	-2.261672	-0.327105
C	-0.731363	0.272505	0.5/1998/	Η	0.231359	-2.192444	0.165412
C	0.806788	1 621283	-0.628831		~ -		
C	-1.301/3	1.583842	0.020031	(c) t	Cd		
C	-1.50145	-0.86/695	-0.159/2	N	0 581509	0 38002	0 077323
$\hat{0}$	-1.0+3008	-0.80+075	-0.13742	C	0.581507	0.037286	0.077323
C	-2.070082	2 / 8053/	0.073343	C C	0.51057	1 772607	-0 /13529
C C	-0.079438	2.460334	0.271978	C C	0.51057	1.772097	-0.413329
	1.340038	-0.007773	0.111333	C C	-1.444508	1.271449	0.860184
C C	2 02075	-1.722931	0.701381		-1.420798	-1.034913	-0.101717
с u	2.93973	-0.393037	-0.404200	C C	-2.31021	-0.834040	-0.027507
н Ц	2 121616	-1.313090	-0.311924	C C	-0.963001	2.092083	-0.32832
п u	3.424040	0.387307	0.16905		1.094308	-0.570022	0.120900
п u	2.920227	-0.072719	-1.449152	0 C	1.033413	-1.332402 0.231634	0.307380
н Ц	-0.370109	-0.16904J	1.579507		2.97339	0.231034	-0.367429
п u	0.473219	1.000234	-1.075415	п u	3./914/3	-0.43043	-0.109242
п u	1.001004	1.693022	-0.360314	п u	5.174542 2.012700	0.28066	0.074463
п u	-1.990601	1.046490	-0.33337	п u	2.912799	0.58000	-1.470093
п	-1.801/89	1.829203	1.393040	П	-0.455010	-0.322199	1.073809
п u	-0.333404	3.440407 2.672728	-0.164024	п U	1.006243	1.045250	-1.430013
	0.439433	2.072750	1.21/0/3	п u	1.090243	2.433000	0.236043
U U	-1.223337	-2.123023	-0.110009	п u	-2.321043	1.101034	0.094455
п	-0.554095	-2.16060	0.311908	п u	-1.142003	1.739396	1.013100
(h) <i>t</i> -	ts1			П	-1.49/438	1./36394	-1.227934
(0) i				П	-1.108834	3.103/33	-0.220141
Ν	0.539229	0.423003	0.09814	U U	-0.700200	-2.203206	-0.303743
С	-0.6955	-0.073372	0.712423	п	0.102023	-2.190030	0.002449
С	0.275791	1.612774	-0.710392	(d) <i>t</i> -	ts?		
С	-1.569244	1.175472	0.871374	(u) <i>i</i>			
С	-1.335985	-1.143419	-0.195349	Ν	0.649265	0.246767	-0.129826
0	-2.389573	-0.989871	-0.758386	С	-0.713227	0.276277	0.454307
С	-0.948188	2.26229	-0.040402	С	1.224206	1.591425	0.116993
С	1.697861	-0.271915	0.174995	С	-1.205765	1.696471	0.125391
0	1.740385	-1.378798	0.724057	С	-1.755841	-0.752373	-0.070225
С	2.930463	0.358616	-0.428208	0	-2.844324	-0.374695	-0.428536
Н	3.769892	-0.31503	-0.259575	С	0.056102	2.552274	-0.094125
Н	3.142653	1.329668	0.02978	С	1.48113	-0.832169	-0.008294
Η	2.799511	0.512398	-1.504199	0	1.093901	-1.941223	0.361922
Η	-0.438279	-0.543701	1.66758	С	2.935401	-0.629774	-0.365652
Η	0.053649	1.318463	-1.744323	Н	3.406742	-1.611105	-0.40971
Η	1.149485	2.267756	-0.719601	Η	3.43842	-0.027411	0.398238

Η	3.044533	-0.121938	-1.327487	Η	-0.54676	-0.538125	1.624942
Η	-0.630882	0.115124	1.541617	Н	0.358575	1.34757	-1.662751
Η	2.058568	1.782528	-0.559549	Н	1.410056	2.260062	-0.567852
Н	1.594965	1.640336	1.151384	Н	-2.5018	1.092427	0.45633
Н	-1.820795	1.654659	-0.773069	Н	-1.530929	1.56198	1.846287
Н	-1.843146	2.072458	0.928401	Н	-1.37378	2.744855	-0.836298
Н	0.074023	2.95169	-1.1112	Н	-0.450474	3.181951	0.598884
Н	0.119994	3.398219	0.594153	0	-2.380558	-1.508857	0.131405
0	-1.451814	-2.038089	-0.022241	Н	-2.734274	-2.105845	-0.551734
Н	-0.501408	-2.162649	0.236474				
				(g) <i>c</i>	Fd		
(e) <i>c</i>	Fu			N	0 717142	0 207110	0 102021
NI	0764575	0.221075	0.077256	N C	-0./1/142	0.38/448	-0.193021
N C	-0./045/5	0.221975	-0.077230	C	0.589589	0.014047	-0.080289
C	0.01/030	0.349775	-0.498001	C	-0.70233	1.752252	0.34109
C	-1.326356	1.480/43	0.414963	C	1.291415	1.3/8233	-0.854641
C	0.970027	1.818576	-0.155086	C	1.3561//	-0.85114	0.308335
C	1.563327	-0.574805	0.245636	0	1.04548	-1.058344	1.452818
0	1.343337	-1.125303	1.292931	C	0.702683	2.197083	0.299842
C	-0.388515	2.523348	-0.19019	C	-1.808874	-0.427663	-0.091121
C	-1.532424	-0.909275	-0.113739	0	-2.861276	-0.011429	0.369018
O	-2.684514	-0.897532	0.294224	C	-1.644649	-1.849457	-0.588672
С	-0.900637	-2.166796	-0.67362	Н	-2.592349	-2.367127	-0.442596
Н	-1.703309	-2.801941	-1.049779	Н	-0.859678	-2.37048	-0.030922
Η	-0.383363	-2.695578	0.132626	Н	-1.384256	-1.870234	-1.652259
Н	-0.182591	-1.972531	-1.476286	Η	0.538391	-0.529366	-1.635514
Η	0.735805	0.171295	-1.575407	Η	-1.187839	1.741399	1.348178
Η	-1.309875	1.501815	1.512546	Н	-1.406646	2.375214	-0.290072
Η	-2.364687	1.567177	0.089362	Н	2.380371	1.29269	-0.836041
Η	1.383724	1.864511	0.859267	Н	0.992584	1.803322	-1.818374
Η	1.709575	2.226483	-0.846757	Η	1.200686	1.933448	1.2392
Η	-0.38634	3.465109	0.363869	Η	0.809065	3.273947	0.149445
Η	-0.680244	2.732019	-1.225563	0	2.471983	-1.355291	-0.256362
0	2.739629	-0.666735	-0.40577	Η	2.936095	-1.878048	0.421442
Η	3.330962	-1.225031	0.129653				
	_			(h) <i>c</i>	-ts2		
(f) <i>c</i>	-ts1			N	0 793731	-0.050425	0 079822
N	0 666437	0 469975	0 221031	C	-0 477775	-0 503203	-0.457671
C	-0.618336	-0.013283	0.667014	C C	1 75808/	-0.303203 -1.142017	-0.437071
C	0.504605	-0.013283	0.618648	C C	0.53264	1 007785	-0.10805
C	1.78477	1.05407	0.70532	C C	1 685806	0 100325	-0.042027 0.141486
C	-1.4/04//	0.082573	0.79552		-1.003090	0.190323	1 285157
$\hat{\mathbf{C}}$	-1.232310	-0.962373	-0.339302	C C	-1.803717 0.042421	0.343733	0.18325
C	-0.77332	-1.237431	-1.410000	C C	1 278045	-2.404313	0.16323
C	-0.740739	2.344940	-0.040818		1.276043	1.24020	-0.020185
	1.800733	-0.288324	0.125922	0 C	2.477195	1.433441	0.04019
C	2.774131	0.10519	-U.JUJYO		0.27/911	2.30/493	-0.104094
U U	1.809333	-1.00/1/1	0.8/0433	H TT	0.83/3//	3.2/303	-0.38/819
н	2.80531/	-2.040654	0.780632	H	-0.2/8306	2.30038	0.00772
H	1.081126	-2.299/03	0.435285	H	-0.442339	2.183063	-0.969772
Н	1.566902	-1.469831	1.929126	Н	-0.515317	-0.40305	-1.552072

-0.997765	0.559312	Н	-3.035676	-2.554466	0.228344
-1.126604	-1.141417	Н	-3.635439	-0.878876	0.081193
-2.096936	0.88524	Н	-2.670196	-1.350143	1.49051
-2.589313	-0.813368	Н	0.342141	0.084878	-1.779086
-2.720069	1.218862	Н	-1.288912	0.848349	1.687296
-3.23264	-0.462211	Н	-2.692359	1.219265	0.655111
0.296762	-0.767174	Н	1.219371	2.36277	-0.355361
0.673193	-0.312402	Н	0.096471	2.428576	-1.707972
		Н	-0.546836	2.997588	1.102751
		Н	-1.613424	3.08631	-0.297192
		0	2.426881	-0.211011	-0.454213
		С	3.48369	-0.75762	0.338688
0.058112	-0.176187	Н	3.239768	-1.781868	0.628418
-0.684178	-0.561506	Н	4.368622	-0.736088	-0.295091
-0.789443	0.413648	Н	3.63434	-0.154083	1.236904
-2.136049	-0.161176				
-0.17277	0.206638	(c) <i>t</i> F	d		
0.107015	1.380613	N	1 145064	0 1130/2	0 307387
-2.167119	-0.145099	C N	-1.143004	0.113942	-0.307387
1.418346	-0.242048	C	-1 828216	1 221382	-0.795108
2.008058	-0.69635	C C	-1.828210	2 007865	0.300934
2.136471	0.2595	C C	1 24/1003	-0.07616	0 1/2002
3.209005	0.204864	0	1.244775	-0.257881	1 3268
1.888794	-0.353767	C	-0 745231	2 30/1375	0.454067
1.854574	1.293807	C C	-1 482215	-1 206856	-0.25003
-0.573603	-1.633944	0	-0 733121	-2 064431	-0 699285
-0.777836	1.511114	C	-2 808941	-1 538768	0 395449
-0.45521	0.116633	н	-3.062098	-2 569569	0.147873
-2.327508	0.848075	Н	-3.606851	-0.868036	0.062917
-2.861908	-0.844615	Н	-2.720065	-1 448516	1.483943
-2.984263	0.458929	Н	0.348642	0.066215	-1.794894
-2.26359	-1.163895	Н	-2.185845	0.918227	1.355186
-0.143591	-0.559954	Н	-2.688828	1.558327	-0.226476
0.346775	0.082543	Н	1.153818	2.438111	-0.669894
0.300385	-0.669957	Н	-0.304274	2.380845	-1.676757
-0.275298	0.944886	Н	-0.177132	2.177529	1.380533
1.375622	0.411699	Н	-1.164023	3.313617	0.437228
		0	2.402507	-0.262356	-0.50118
		Č	3.476351	-0.757269	0.302093
0.150553	-0.298512	Ĥ	4.320737	-0.872972	-0.375482
0.475684	-0.771757	H	3.711923	-0.047065	1.098294
1.138895	0.676291	Н	3.19842	-1.716715	0.74357

Η

Η

Η

Η

Η

Η

0

Η

Ν

С

С

С

С

0

С

С

0

С

Η

Η

Η

Η

Η

Η

Η

Η

Η

Η

0

С

Η

Η

Η

N C

С

С

С

0

С

С

0

С

(b) *t*-ts1

(a) *t*Fu

2.60804

2.136957

-1.101365

-1.032154

1.088801

1.244799

-2.675816

-3.450456

1.103212

-0.089361

2.135352

0.245293

-1.30103

-1.284392

1.778227

1.085134

0.112509

2.318493

2.133966

3.191327

2.541231

-0.280414

2.07037

3.133076

-0.136046

-0.200214

2.180412

2.169387

-2.394296

-3.572725

-4.358388

-3.823173

-3.410873

-1.142869

0.186443

-1.602465

0.243523

1.233392

1.031869

-0.910258

-1.525567

-0.86541

-2.802843

2.017625

-0.145532

-0.486814

2.441236

-1.166457

-2.00359

-1.506292

-0.706883

0.147154

1.287989

0.235728

-0.319717

-0.917392

0.414276

(2) Ac-Pro-OMe

(d) *t*-ts2

N	-1.073756	-0.111616	-0.010223
С	0.026262	0.724663	-0.468592
С	-2.319182	0.61837	-0.247795
С	-0.410043	2.138813	-0.033744
С	1.330267	0.316245	0.203642

0	1.471172	0.224021	1.397651	Ν	1.175105	0.182276	0.191761
С	-1.951063	2.065887	0.110475	С	-0.145947	0.38052	0.741635
С	-0.94629	-1.476311	-0.057095	С	1.518996	1.268251	-0.722358
0	0.13249	-2.002645	-0.286608	С	-0.293241	1.921388	0.815704
С	-2.197443	-2.279183	0.226054	С	-1.224067	-0.230732	-0.152415
Н	-1.921241	-3.332254	0.272852	0	-1.033408	-0.724224	-1.236278
Н	-2.938002	-2.136634	-0.568469	С	0.794046	2.48712	-0.13157
Н	-2.653583	-1.975486	1.173091	С	1.811803	-1.028198	0.079657
Н	0.146013	0.642272	-1.557307	0	2.794673	-1.160337	-0.631108
Н	-3.127395	0.221036	0.370076	С	1.254097	-2.167056	0.90879
Н	-2.615909	0.534365	-1.304761	Н	1.933029	-3.014414	0.815555
Н	0.050559	2.372362	0.929088	Н	0.266121	-2.46117	0.538014
Н	-0.087246	2.887995	-0.760429	Н	1.159737	-1.890614	1.9637
Н	-2.242912	2.283444	1.140627	Н	-0.245676	-0.073232	1.732615
Н	-2.466425	2.777174	-0.539595	Н	1.163034	1.025421	-1.732189
0	2.311989	0.149216	-0.68703	Н	2.603587	1.377129	-0.763537
С	3.549083	-0.307352	-0.138093	Н	-1.303876	2.230715	0.538793
Н	4.2338	-0.386854	-0.981022	Н	-0.124138	2.250812	1.843248
Н	3.923675	0.40351	0.601919	Н	0.362708	3.10938	-0.919229
Н	3.400197	-1.281156	0.334281	Н	1.492939	3.110155	0.432141
				0	-2.429686	-0.14627	0.429403
(e) <i>c</i> Ft	1			C	-3.518262	-0.677728	-0.332214
		0 0 10 1 1		H	-3.347348	-1.735313	-0.544528
N	-1.159017	-0.040645	-0.079478	Н	-4.403319	-0.545272	0.287863
C	0.07614	0.584998	-0.518114	H	-3.619705	-0.134265	-1.274276
С	-2.146232	0.924088	0.406311		51017705	0112 1202	1127 1270
С	-0.132748	2.076454	-0.163745	(g) <i>c</i> l	Fd		
С	1.304677	0.06195	0.209635				
0	1.317433	-0.376285	1.332276	Ν	-1.177958	0.138271	-0.183765
С	-1.655033	2.237107	-0.199997	С	0.135343	0.343462	-0.755734
С	-1.446069	-1.376151	-0.097292	С	-1.739187	1.350142	0.42139
0	-2.517854	-1.796045	0.314709	С	0.210411	1.878607	-0.886735
С	-0.379991	-2.306091	-0.640607	С	1.247013	-0.154727	0.164468
Н	-0.869213	-3.228691	-0.954073	0	1.125105	-0.397314	1.339223
Н	0.332801	-2.539646	0.157002	С	-0.588316	2.356921	0.331231
Н	0.172329	-1.878945	-1.483761	С	-1.821902	-1.058135	-0.050465
Н	0.232437	0.46361	-1.597594	0	-2.91597	-1.128299	0.489471
Н	-2.141625	0.951828	1.50379	С	-1.117643	-2.274917	-0.616987
Н	-3.142711	0.622297	0.077959	Η	-1.75903	-3.140666	-0.45356
Н	0.232525	2.258109	0.853861	Η	-0.15814	-2.439923	-0.115284
Н	0.406628	2.733822	-0.849101	Η	-0.929506	-2.163053	-1.689966
Н	-1.997507	3.114843	0.353547	Η	0.248394	-0.148084	-1.727154
Н	-2.00273	2.324199	-1.235528	Н	-2.055123	1.139656	1.446163
0	2.399139	0.202684	-0.552605	Н	-2.62194	1.670731	-0.144802
С	3.629055	-0.190207	0.063732	Η	1.239679	2.24454	-0.920021
Н	4.400782	-0.018209	-0.684495	Н	-0.290971	2.172504	-1.814873
Η	3.812448	0.410951	0.957114	Η	0.030267	2.297249	1.232857
Η	3.588414	-1.245379	0.343049	Η	-0.940355	3.385875	0.22597
(6	1			0	2.404786	-0.259045	-0.505455
(t) <i>c</i> -ts	51			С	3.530581	-0.672917	0.274748

Η	4.368859	-0.716298	-0.418503	Н	2.878225	-0.151791	0.878903
Н	3.722544	0.049702	1.071003	Н	0.014316	-2.674827	0.158196
Н	3.341848	-1.65348	0.717117	Н	0.483265	-2.620986	-1.549165
				Н	2.437734	-2.777832	0.359465
(h) <i>c</i> -ts	\$2			Н	2.66545	-1.665078	-1.005468
• •	1 1 2 0 2 0	0.1.41.001	0.050000	Ν	-2.118765	0.502665	-0.291108
N	1.13829	0.141891	0.058933	Н	-1.622171	1.256939	-0.758241
C	0.022694	-0.646618	-0.446/42	С	-3.394496	0.751514	0.351589
C	2.362812	-0.630274	-0.182408	Н	-3.824163	1.663341	-0.065099
C	0.407601	-2.095197	-0.056589	Н	-4.072062	-0.085932	0.167979
C	-1.310423	-0.299626	0.197461	Н	-3.279662	0.864063	1.43533
0	-1.496527	-0.179255	1.382181				
С	1.944839	-2.073777	0.1145	(b) <i>t</i> -	ts1		
С	1.230666	1.51713	0.001421				
0	2.319318	2.067853	0.028961	Ν	0.987245	-0.111377	0.083299
С	-0.058384	2.310395	-0.053736	С	-0.029793	0.634384	0.82814
Η	0.206275	3.360455	-0.176654	С	1.634135	0.762493	-0.893127
Η	-0.624701	2.182801	0.873426	С	0.51327	2.068734	0.868374
Η	-0.692647	1.998571	-0.891397	С	-1.368743	0.541313	0.071477
Η	-0.07362	-0.545568	-1.537216	0	-1.788988	1.452444	-0.631375
Η	3.161911	-0.257605	0.458385	С	1.615788	2.143497	-0.216718
Η	2.681233	-0.501495	-1.227474	С	1.120444	-1.455183	0.208035
Η	-0.077446	-2.352256	0.888179	0	0.398957	-2.107728	0.964139
Η	0.068877	-2.800801	-0.81904	С	2.20547	-2.115564	-0.615554
Η	2.210891	-2.342051	1.139559	Н	2.183409	-3.184396	-0.405183
Η	2.444811	-2.77846	-0.554451	Н	3.192686	-1.716872	-0.360966
0	-2.279853	-0.194748	-0.723292	Н	2.040721	-1.951315	-1.685307
С	-3.583707	0.087724	-0.206799	Н	-0.135466	0.179236	1.816783
Н	-4.243486	0.111173	-1.072228	Н	1.055401	0.773044	-1.826398
Н	-3.889128	-0.690627	0.495786	Н	2.644469	0.412576	-1.114635
Н	-3.581107	1.053293	0.30515	Н	-0.294881	2.774779	0.672328
				Н	0.929696	2.27945	1.856137
(3) Ac-	-Pro-NHMe			Н	1.416494	2.930617	-0.946881
(a) #C 11				Н	2.588045	2.348136	0.239831
(a) <i>i</i> Cu				Ν	-2.012301	-0.636618	0.224859
Ν	0.941522	0.149412	0.078479	Н	-1.517055	-1.386626	0.700234
С	-0.024016	-0.687393	-0.657667	С	-3.222985	-0.916309	-0.522808
С	1.931284	-0.681801	0.765982	Н	-3.638249	-1.862927	-0.174847
C	0.569989	-2.103724	-0.59098	Н	-3.951371	-0.118635	-0.358873
Ċ	-1.416124	-0.610773	0.006015	Н	-3.023762	-0.979015	-1.598348
Õ	-1.838354	-1.491304	0.744997		01020702	01777010	1.070010
Č	2.024647	-1.902821	-0.148808	(c) <i>t</i> (Cd		
Č	1 012648	1 485241	-0 146079				
0	0 209842	2 057894	-0 884947	Ν	1.003415	-0.018076	0.047887
C	2 119181	2.057021	0.548709	С	-0.092561	0.59098	0.821044
н	1 91568	3 31/689	0.425516	С	1.825062	0.988868	-0.637161
н	3 089441	2 02/28	0.093701	С	0.30092	2.066022	0.872047
н Ц	2 176075	2.02420	1 61315/	С	-1.445303	0.386361	0.10858
н Ц	2.170073	2.007040 0.208216	1.013134	0	-2.043315	1.310044	-0.431056
н ц	-0.073273	-0.270310	-1.0/9/93	С	1.016093	2.2773	-0.466791
п	1.301207	-0.902114	1./0093	С	1.307146	-1.333334	0.171038

\cap	0 605086	2 102185	0 830702	С	0.007406	0.653318	0.686313
C	2 544024	-2.102165	0.830702	C C	1 878611	0.055518	0.080313
с ц	2.544924	-1.0120	-0.334900	C C	0.274274	0.79392	-0.800745
п U	2.091322	-2.800327 1 243108	-0.320399	C C	1 450851	0.200603	0.29870
н Ц	2 125130	-1.243108	-0.234142		-1.450851	0.299003	1 20/388
и П	0.132027	-1.093783	1 805020	C C	-2.328072	0.384077	0.127374
и П	1 081008	0.113334	1.605929	C C	1.744401	2.124233	-0.127374
п U	2 806356	0.713331	-1.080103		1.323113	-1.407034	0.094239
и П	2.800330	2 71045	-0.130281	C C	0.503171	-1.951088	-0.528510
п п	-0.371427	2.71045	0.989200	С U	0.303171	-2.100109	1.110924
и П	0.9908	2.23004	1.70740	11 U	0.649763	-3.201222	0.882616
и П	1 653242	2.30332	-1.201754	и П	-0.303810	-2.142008	0.882010
N	1.055242	0.880611	-0.482303	и П	0.055109	-1.739229	2.110219
	-1.900917	-0.880011	0.131008	11 U	1.540083	0.303329	1.701341
II C	-1.303301	-1.000773	0.520008	11 U	1.340083	0.070909	-1.906343
с u	-3.132692	-1.228302	-0.339974	11 U	2.86377	0.373138	-0.871193
и П	3 052604	-2.272703	0.211180	и П	-0.30083	2.397803	-0.332829
п п	-3.932004	-0.39472	-0.211109	11 U	0.042099	2.001900	0.740113
11	-3.031294	-1.000479	-1.041279	11 U	2.007129	2.963720	-0.749113
(d) <i>t</i> -	ts2			II N	2.393737	2.124197	0.753924
(4) !	•••			л Ц	-1.703270	-0.270014	-0.799172
Ν	1.054519	0.160572	0.042266	II C	-0.92101	-0.526554	-1.363429
С	0.032577	-0.729962	-0.50114	с ц	-3.00132	-0.001198	-1.188125
С	2.360259	-0.46065	-0.212914	и П	-3.04332	1 31753	-2.186240
С	0.572823	-2.128622	-0.154171	и П	-3.500505	-1.31733	1 100080
С	-1.329003	-0.494586	0.173025	11	-3.004327	0.297101	-1.190989
0	-1.497557	-0.755388	1.351843	(f) <i>c</i> -	ts1		
С	2.099048	-1.951742	0.034769	(-) -			
С	0.854772	1.515965	-0.008993	Ν	1.017061	0.092842	-0.003357
0	-0.228877	1.98931	-0.325122	С	-0.072264	0.604231	0.81077
С	2.033001	2.386365	0.370964	С	1.343146	1.005864	-1.095822
Н	1.683629	3.415345	0.45244	С	0.028994	2.140518	0.661149
Н	2.812468	2.333013	-0.397209	С	-1.463664	0.106828	0.38894
Н	2.470822	2.06653	1.320919	0	-2.457176	0.475847	0.998918
Η	-0.050968	-0.58159	-1.589591	С	0.963566	2.391449	-0.547605
Н	3.123513	-0.046325	0.449499	С	1.62795	-1.124719	0.117052
Η	2.66729	-0.278143	-1.254554	0	2.441135	-1.511844	-0.711065
Η	0.105771	-2.455845	0.776655	С	1.247119	-1.958232	1.324861
Η	0.325357	-2.848119	-0.938638	Н	1.768468	-2.91221	1.250569
Η	2.385549	-2.218203	1.055015	Н	0.167126	-2.134888	1.368476
Η	2.683943	-2.572525	-0.648377	Н	1.544189	-1.456668	2.251827
Ν	-2.328009	-0.071784	-0.648883	Н	0.045688	0.303997	1.855811
Η	-2.017045	0.463839	-1.450003	Н	0.761992	0.754362	-1.99454
С	-3.582509	0.346267	-0.046093	Н	2.399613	0.898536	-1.347345
Н	-4.310471	0.535953	-0.836599	Н	-0.966089	2.571048	0.531724
Η	-3.949292	-0.454054	0.598182	Н	0.451281	2.571615	1.571339
Η	-3.45047	1.249022	0.562124	Н	0.48113	2.999913	-1.316203
				Н	1.861919	2.924595	-0.226257
(e) <i>c</i>	Au			Ν	-1.523895	-0.740573	-0.663915
Ν	0 988105	-0.091023	-0.105274	Н	-0.672392	-1.006556	-1.13826
	(), , ()() (), (), ()		VI. I VI. I 4 / T				

С	-2.803715	-1.254721	-1.116734	Н	-2.868239
Н	-2.635164	-1.928525	-1.957268	Н	0.341042
Н	-3.302433	-1.79615	-0.308234	Н	-0.319318
Н	-3.455955	-0.434283	-1.429223	Н	-1.779723
				Н	-2.508249
(g) <i>c</i> Ac	l			Ν	1.743172
NT	1 002250	0 1 4 1 45 6	0.027102	Н	1.008251
N	1.003259	0.141456	-0.03/193	С	3.119069
C	-0.091/85	0.49/562	0.861479	Н	3.227699
C	1.429688	1.266297	-0.881618	Н	3.413859
C	-0.09/646	2.034981	0.80423	Н	3.782497
C	-1.460103	-0.055506	0.44017		
0	-2.440581	0.127325	1.148345	B. Wa	ter
C	0.347583	2.320487	-0.634411		Dro OU
C	1.790627	-0.974627	0.05033	(\mathbf{I}) AC	•гю-оп
0 õ	2.775834	-1.102965	-0.662234	(a) <i>t</i> Fu	
С	1.37771	-2.024929	1.061867		
Н	1.943045	-2.933409	0.854849	N	-0.726877
Н	0.305028	-2.239019	1.02457	С	0.654858
Н	1.61776	-1.684763	2.075437	С	-1.423244
Н	0.085349	0.136206	1.87888	С	0.877797
Н	1.510326	0.95162	-1.925898	С	1.614506
Н	2.423438	1.603923	-0.562554	Ο	1.471049
Н	-1.077222	2.442087	1.06296	С	-0.525555
Н	0.641778	2.422857	1.513149	С	-1.24396
Н	-0.491884	2.17152	-1.323514	Ο	-0.548923
Н	0.721446	3.337552	-0.773214	С	-2.678473
Ν	-1.514747	-0.72208	-0.734665	Н	-2.910811
Н	-0.664064	-0.835092	-1.268437	Н	-3.338333
С	-2.769719	-1.273756	-1.210078	Н	-2.862517
Н	-2.59407	-1.784569	-2.157338	Н	0.785209
Н	-3.173128	-1.982908	-0.481842	Н	-1.474298
Н	-3.507547	-0.479562	-1.354732	Н	-2.436453
				Н	1.218057
(h) <i>c</i> -ts	2			Н	1.620494
NT	1 002706	0 1 40 9 5 5	0.160000	Н	-0.632845
N	-1.003/86	0.142855	-0.162909	Н	-0.766476
C	-0.103684	-0.653/95	0.676406	Ο	2.692636
C	-2.266851	-0.612/8	-0.2/0135	Н	3.31243
C	-0.397615	-2.10/184	0.233227		
C	1.378145	-0.34863	0.470196	(b) <i>t</i> -ts	1
0	2.175447	-0.401561	1.394236	N T	0 68 480 4
C	-1.814958	-2.071035	-0.384976	N	-0.674794
C	-1.144246	1.518863	-0.006034	C	0.707016
0 õ	-2.17418	2.074138	-0.345317	C	-0.805783
C	0.021595	2.293051	0.572474	C	1.401044
Η	-0.301612	3.32585	0.70133	С	1.334751
Η	0.885851	2.265367	-0.097845	0	0.911926
Η	0.342372	1.885845	1.537098	С	0.432551
Η	-0.317233	-0.515524	1.744937	С	-1.561312
Н	-2.841759	-0.255972	-1.124752	Ο	-1.257347

-2.868239	-0.439337	0.633519
0.341042	-2.425386	-0.50729
-0.319318	-2.784742	1.086298
-1.779723	-2.377239	-1.433882
-2.508249	-2.7413	0.128755
1.743172	-0.09914	-0.81127
1.008251	0.038019	-1.493452
3.119069	0.22141	-1.138022
3.227699	0.253354	-2.222877
3.413859	1.188656	-0.714121
3.782497	-0.543606	-0.728636

0.164203

0.422687

1.376493

1.888337

-0.501344

-0.909652

2.490534

-1.070723

-2.006714

-1.258809

-2.323961

-0.751358

-0.833132

0.289409

1.391268

1.411617

1.92327

2.377764

3.415913

2.692179

-0.771397

-1.323334

0.366087

0.104049

1.576395

1.483431

-0.858963

-1.081157

2.414891

-0.654443

-1.759327

-0.101274

-0.485893

0.356449

-0.065771

1.368953

-0.177048

-0.220579

-0.662878

0.190033

0.196772

-0.522187

1.18093

-1.564922

1.451509

-0.048074

0.975389

-0.697742

0.392456

-1.226057

-0.509234

0.007767

-0.320824

-0.677371

0.50216

-0.614079

0.315253

1.432125

0.151397

-0.322196

-0.805455

0.2342

С	-2.913137	-0.390043	0.279681	Н	-2.983149	-2.287019	0.105899
Н	-3.55942	-1.24894	0.097316	Н	-3.323682	-0.641734	-0.49705
Н	-3.366987	0.511285	-0.142063	Н	-2.89455	-0.880584	1.201344
Н	-2.809861	-0.236978	1.36018	Н	0.733444	0.170884	-1.595704
Н	0.774623	-0.343498	-1.671028	Н	-2.103838	1.343292	0.985708
Н	-0.818118	1.30212	1.563209	Н	-2.175523	1.517124	-0.776996
Н	-1.738767	2.091458	0.26614	Н	1.604264	1.964559	0.626294
Н	2.375536	1.407878	-0.125693	Н	1.384146	2.349371	-1.081062
Н	1.567924	1.843833	-1.630415	Н	-0.412903	2.948211	1.132938
Н	0.890325	2.812974	1.058898	Н	-0.704862	3.307032	-0.56809
Н	0.151856	3.262065	-0.477908	0	2.652034	-0.849698	-0.54312
0	2.449299	-1.413127	-0.172731	Н	3.292424	-1.358368	-0.00736
Н	2.854653	-1.98782	0.506558				
				(e) <i>c</i> F	Fu		
(c) <i>t</i> F	d			N	-0.7637	0 235509	-0 072909
N	-0 701614	0 315311	-0.288858	C N	0.7037	0.235307	-0.072505
C	0.673821	0.010011	-0.200030	C	-1 306709	1 5105/0	0 396/15
C	0.073821	1 666117	0.250213	C	-1.300703	1.019049	0.39043
C	-0.927813	1.000117	0.239213	C C	1.007832	0.608212	-0.134022
C	1.207293	0.785031	-0.71032		1.545741	-0.008212 1 101727	1 270603
	1.408037	-0.763931	1 426242	C C	0.222842	-1.191727	0.104847
0 C	1.072113	-0.976361	1.430242	C C	-0.332642	2.335315	-0.19464/
C	0.469700	2.220398	0.408003		-1.310097	-0.07790	-0.11404
	-1.309716	-0.711272	-0.230034	C C	-2.079437	-0.073433	0.339083
C C	-1.227304	-1.049390	-0.024870 0.271470	с u	-0.942740	-2.131018	-0.720092
С U	-2.930019	-0.425559	0.2/14/9	п u	-1.744023	-2.036930	-1.202202
н Ц	-3.002424	-1.200401	0.039093	11 U	-0.003240	-2.793701	1 40256
н Ц	-3.300314	0.49301	-0.100820	11 U	-0.109108	-1.931101	-1.40230
11 U	-2.90929	-0.292433	1.556769	11 U	1 211261	1 548024	-1.3/1104
н Ц	1 450083	-0.373472	-1.069602	11 U	-1.311201	1.340924	0.028528
н Ц	-1.439963	2 260187	0.442522	11 U	-2.330631	1.036170	0.036326
н Ц	-1.322247	2.200187	-0.443333	11 U	1.400993	1.030004 2.104170	0.865475
н Ц	2.346903	1.022106	-0.33833		0.222791	2.194179	-0.019000
п u	0.808163	1.962100	-1.0/09//	п U	-0.322781	3.472014 2.744663	1 225207
н Ц	0.898103	2 208575	0.32216		-0.000874	2.744003	-1.233307
\cap	0.514674	1 306538	0.32210	U Ц	2.732030	-0.094340 1 075751	-0.309793
U U	2.317133	-1.300338	-0.231449	11	5.525909	-1.273731	0.147303
п	2.990303	-1.830909	0.424240	(f) <i>c</i> -1	ts1		
(d) <i>t</i> -	ts2						
		0.155000	0.001.555	N	0.655364	0.502926	0.249161
N	-0.725577	0.155303	-0.081575	C	-0.631392	-0.020175	0.67609
C	0.638485	0.385978	-0.526096	C	0.468215	1.695315	-0.584179
C	-1.500574	1.392819	0.07659	C	-1.543857	1.228046	0.759826
C	0.915498	1.8/50/5	-0.21782	C	-1.173844	-1.014335	-0.341379
C	1.614705	-0.498316	0.224068	0	-0.683183	-1.234575	-1.430204
0	1.524341	-0.801194	1.396778	C	-0.812788	2.335061	-0.036048
C	-0.449297	2.510/1	0.133428	C	1.7/3946	-0.252472	0.139395
C	-1.2503	-1.083529	-0.164657	U C	2.743913	0.141719	-0.528124
U	-0.541276	-2.049246	-0.504733	C	1.811038	-1.560807	0.887085
C	-2.704771	-1.235868	0.183437	Н	1.565046	-1.417/46	1.943469

Η	2.812367	-1.98347	0.800459
Η	1.091932	-2.271628	0.465898
Η	-0.55946	-0.531043	1.639512
Η	0.360143	1.394323	-1.6335
Η	1.34062	2.344917	-0.501446
Η	-2.535976	1.012349	0.357684
Η	-1.664539	1.510789	1.806777
Η	-1.429074	2.725374	-0.848087
Η	-0.564267	3.167665	0.625904
0	-2.277574	-1.620621	0.105291
Н	-2.617499	-2.228002	-0.581238

(g) *c*Fd

Н	-0.236465	2.144872	-1.068275
Н	-0.514718	-0.312943	-1.540309
Н	2.503347	-1.253331	0.598658
Н	2.037459	-1.285736	-1.114444
Η	-1.300901	-1.999954	0.850463
Η	-1.239086	-2.451006	-0.859243
Η	0.82431	-2.818513	1.20227
Η	0.955046	-3.304609	-0.491287
0	-2.692204	0.399954	-0.701798
Η	-3.45685	0.814178	-0.254859

(2) Ac-Pro-OMe

(g) c	Fa			(a) <i>t</i> F	⁷ u		
N C C C C O C C O C H H H H H H H H H H H	-0.718303 0.588458 -0.736111 1.295379 1.346799 1.040024 0.72958 -1.78991 -2.857354 -1.656419 -2.593852 -0.843855 -1.442301 0.513772 -1.134491 -1.381388 2.383296 0.990325 1.243568 0.832215 2.427346 2.914044	0.386868 - 0.001789 1.763127 1.354031 - 0.852539 - 0.998324 2.194684 - 0.422336 - 0.004922 - 1.827835 - 2.357343 - 2.366648 - 1.812167 - 0.559684 1.771789 2.383822 1.259949 1.762573 1.948312 3.267438 - 1.41248 - 1.924374	$\begin{array}{c} -0.183072\\ -0.69039\\ 0.34091\\ -0.882888\\ 0.315695\\ 1.481477\\ 0.26484\\ -0.084816\\ 0.401207\\ -0.611924\\ -0.440368\\ -0.113985\\ -1.685526\\ -1.627465\\ 1.35852\\ -0.290186\\ -0.867063\\ -1.850648\\ 1.199813\\ 0.089604\\ -0.237463\\ 0.438482\end{array}$	(a) <i>t</i> FNCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	-1.102612 0.11114 -2.175217 -0.173245 1.327156 1.342927 -1.695956 -1.163179 -0.187159 -2.445835 -2.305392 -3.248688 -2.750141 0.270865 -2.25149 -3.132903 0.124943 0.369183 -2.111513 -1.982095 2.4017 3.628957	-0.04316 0.67082 0.858291 2.115766 0.103681 -0.260129 2.217869 -1.381961 -2.031188 -2.043953 -3.125086 -1.785697 -1.710169 0.607855 0.838731 0.556222 2.236604 2.841112 3.043337 2.347485 0.113344 -0.33876	-0.118166 -0.500321 0.331553 -0.051121 0.205357 1.36563 -0.173528 -0.210157 -0.635955 0.212132 0.212762 -0.486813 1.208877 -1.581649 1.424909 -0.097201 0.996558 -0.659765 0.408096 -1.222498 -0.580114 0.017178
(h) <i>c</i>	-ts2			Н	4.378365	-0.268796	-0.768903
N C C	0.796152 -0.511062 1.656174	-0.101008 -0.439278 -1.289174	0.108603 -0.451834 -0.085689	Н Н (b) <i>t-</i>	3.893781 3.5207 ts1	0.305971 -1.372182	0.857447 0.35231
C C O C C O C O C	-0.706016 -1.662591 -1.705651 0.720497 1.372711 2.599757 0.491411	-1.927489 0.333731 0.771342 -2.469992 1.129725 1.258527 2.326244	-0.064074 0.149369 1.280607 0.172376 -0.027341 0.083804 -0.271075	N C C C C O C	-1.135986 0.196177 -1.647941 0.258698 1.245511 1.038506 -0.901944	0.140057 0.47459 1.156229 2.015139 -0.170205 -0.592842 2.441125	-0.287755 -0.756232 0.643412 -0.675081 0.136667 1.258089 0.253797
H H	1.126673 -0.05384	3.165724 2.587185	-0.555065 0.640567	C	-1.543442	-1.149101	-0.306512

Ο	-0.874536	-2.020923	-0.888717	С	-0.099947	2.112336	-0.150467
С	-2.838811	-1.467191	0.387421	С	1.335995	0.079335	0.193695
Н	-3.087497	-2.514549	0.215377	0	1.37622	-0.22107	1.371341
Н	-3.64746	-0.830615	0.015613	С	-1.611765	2.275062	0.131258
Н	-2.739996	-1.288652	1.463845	С	-1.19208	-1.382506	-0.141393
Н	0.3512	0.112087	-1.774403	0	-0.2055	-2.070656	-0.462161
Н	-1.421591	0.858642	1.673656	С	-2.525412	-1.993924	0.188975
Н	-2.730315	1.250957	0.538986	Н	-2.442846	-3.079795	0.13886
Η	1.230966	2.351197	-0.307123	Н	-3.28321	-1.652602	-0.524468
Н	0.125023	2.42629	-1.677035	Н	-2.851415	-1.695198	1.190138
H	-0.535896	2.95252	1.146172	Н	0.248412	0.491278	-1.594776
Н	-1.57056	3.126329	-0.271648	Н	-2.862499	0.627149	0.876949
0	2.441207	-0.185363	-0.448968	Н	-2.851041	0.787548	-0.890068
Č	3.524671	-0.717722	0.333322	Н	0.479777	2.363767	0.741852
н	3 325246	-1 762975	0.576918	Н	0 245064	2.751018	-0.964769
Н	4 408202	-0.634008	-0 296497	Н	-1 764966	2.680738	1 133211
н	3 645632	-0 13178	1 246439	н	-2 076223	2.000750	-0 579267
11	5.045052	0.13170	1.2+0+37	$\hat{0}$	2.070225	0.047178	-0.612859
(c) <i>t</i> F	ď			C C	2.574715	-0.365573	-0.012057
(-)				с н	<i>A</i> 371919	-0.303373	-0.010007
Ν	-1.141172	0.11715	-0.290717	и Ц	3 906879	0.319856	0.780306
С	0.187308	0.459489	-0.774993	и Ц	3.5/00075	-1 383561	0.767530
С	-1.831135	1.257547	0.33998	11	5.545828	-1.383301	0.307339
С	0.200686	1.997766	-0.707623	(e) <i>c</i> F	- -		
С	1.255633	-0.128863	0.132555	(0) 01			
Ο	1.093296	-0.417708	1.302532	Ν	-1.169925	0.001909	-0.102008
С	-0.721767	2.301467	0.475987	С	0.100383	0.559999	-0.557716
С	-1.529732	-1.170073	-0.240023	С	-2.056095	1.028849	0.463347
Ο	-0.78971	-2.074706	-0.672613	С	-0.009934	2.063637	-0.205844
С	-2.878148	-1.459406	0.360647	С	1.288918	-0.03319	0.172397
Н	-3.15946	-2.48655	0.126437	0	1.237411	-0.587534	1.252523
Н	-3.639965	-0.770983	-0.015572	С	-1.518961	2.309024	-0.16548
Н	-2.825237	-1.343005	1.449111	С	-1.499927	-1.303209	-0.102423
Η	0.349639	0.083257	-1.78771	0	-2.560743	-1.693428	0.421879
Η	-2.254783	0.96393	1.302685	С	-0.563532	-2.283255	-0.761164
Η	-2.639833	1.609877	-0.309903	Н	-1.160872	-3.104492	-1.161783
Н	1.210324	2.398485	-0.590848	Н	0.120007	-2.692713	-0.009956
Η	-0.223403	2.387832	-1.637653	Н	0.026773	-1.841449	-1.567494
Н	-0.186878	2.154924	1.420073	Н	0.233559	0.419233	-1.634863
Н	-1.114402	3.320167	0.454432	Н	-1.968501	1.043936	1.556793
0	2.420721	-0.244842	-0.502174	Н	-3.091734	0.809399	0.198609
Ċ	3.528483	-0.716814	0.283969	Н	0.422449	2.240465	0.785708
H	4.374279	-0.756849	-0.399824	Н	0.521932	2.678627	-0.933226
н	3 728026	-0.019551	1 099997	н	-1 783215	3 198129	0.410702
н	3 307465	-1 710217	0.678845	н	-1 914383	2 416916	-1 1809
11	5.507405	1.710217	0.070045	0	2 418618	0 188375	-0.495034
(d) <i>t</i> -1	ts2			C	2.410010	-0 244068	0.1/790/
				н	4 434106	0.018718	-0 538208
Ν	-1.097758	-0.03938	-0.067245	Н	3 7521/1	0.277316	1 000365
С	0.114018	0.62716	-0.516055	и Ц	3.752141	-1 373460	0.3080325
С	-2.240943	0.879014	0.015468	11	5.001540	-1.323409	0.306233

s36	

				0	-2.397618	-0.299837	0.484426
(f) <i>c</i> -ts	51			С	-3.51991	-0.716646	-0.313445
N .T	1 1000 (2	0.1.6000.4	0.00056	Н	-4.371994	-0.722815	0.363465
N	1.188963	0.162904	0.209056	Н	-3.680577	-0.005352	-1.125907
C	-0.13/155	0.40163	0.75504	Н	-3.341217	-1.716036	-0.71443
C	1.572591	1.249939	-0.698432				
C	-0.263831	1.94394	0.790613	(h) a	e-ts2		
C	-1.208/12	-0.203739	-0.142178		1 1 5 60 1 5		0 1 1 0 10 0
0	-1.00923	-0.668958	-1.247684	N	1.156915	0.086945	0.110492
C	0.858437	2.480199	-0.128325	C	-0.021421	-0.58757	-0.436964
С	1.744487	-1.065914	0.090063	С	2.305109	-0.813744	-0.130713
0	2.717906	-1.25431	-0.658329	С	0.209357	-2.077106	-0.085927
С	1.162675	-2.178969	0.922383	С	-1.322647	-0.147269	0.201436
Н	1.806165	-3.054823	0.83563	0	-1.461933	0.126622	1.377384
Η	0.160227	-2.441935	0.566497	С	1.736057	-2.211904	0.112053
Η	1.082491	-1.886377	1.97325	С	1.366457	1.431168	-0.013371
Η	-0.247252	-0.03334	1.751287	0	2.511358	1.895333	0.074479
Н	1.235726	1.013088	-1.715247	С	0.180815	2.335764	-0.225405
Η	2.658297	1.353808	-0.712832	Н	0.550401	3.338372	-0.442336
Н	-1.256536	2.25993	0.462881	Н	-0.441483	2.374738	0.67344
Η	-0.128777	2.289487	1.816868	Н	-0.439641	1.997147	-1.06199
Η	0.461663	3.104782	-0.930898	Н	-0.081768	-0.443594	-1.521478
Н	1.557298	3.086519	0.452283	Н	3.126587	-0.562305	0.53975
0	-2.408147	-0.145673	0.431055	Н	2.64555	-0.683148	-1.16565
С	-3.511852	-0.633738	-0.352423	Н	-0.320332	-2.329443	0.836379
Н	-3.36796	-1.692188	-0.577185	Н	-0.177743	-2.712022	-0.884652
Н	-4.394214	-0.491465	0.268512	Н	1.954965	-2.538235	1.131293
Н	-3.593948	-0.056375	-1.275212	Н	2.175812	-2.936421	-0.576054
				0	-2.324742	-0.171675	-0.673873
(g) <i>c</i> Fo	t			С	-3.628819	0.142887	-0.153727
NT	1 179642	0.160050	0 179 (07	Н	-4.308156	0.054111	-0.999189
N	1.1/8643	0.168052	0.1/862/	Н	-3.896724	-0.565946	0.632052
C	-0.139401	0.314851	0.///123	Н	-3.63278	1.162536	0.236788
C	1.638592	1.40326	-0.480106				
C	-0.271873	1.841891	0.927525	(3)	Ac-Pro-NHMe		
C	-1.228595	-0.216692	-0.145707	(a) <i>t</i>	Fu		
0	-1.070509	-0.501284	-1.317015	(4) 1			
C	0.462265	2.369327	-0.308627	Ν	-1.111651	-0.043674	-0.124136
С	1.851606	-0.990669	0.048462	С	0.107785	0.666086	-0.506314
0	2.937017	-1.02915	-0.560373	С	-2.172117	0.86199	0.344557
С	1.259125	-2.221154	0.686475	С	-0.177728	2.113378	-0.068384
Η	1.952199	-3.052428	0.555097	С	1.333656	0.107718	0.205441
Η	0.302212	-2.47912	0.219839	0	1.298501	-0.22455	1.400938
Η	1.082337	-2.060538	1.754319	С	-1.700734	2.218153	-0.175043
Η	-0.212158	-0.198776	1.738592	С	-1.191378	-1.380525	-0.217198
Н	1.875997	1.201208	-1.527778	0	-0.237073	-2.047377	-0.665686
Н	2.545903	1.763419	0.016076	С	-2.475307	-2.026816	0.229029
Н	-1.313568	2.163543	0.990827	Н	-2.346353	-3.109446	0.229314
Н	0.244529	2.141729	1.844186	H	-3.287519	-1.76246	-0.456705
Н	-0.19345	2.324704	-1.184278	H	-2.75919	-1.688869	1.230338
Н	0.797313	3.401248	-0.186895	**		1.000000	1.200000

Н	0.251909	0.602236	-1.591471	С	-0.955608	2.275817	0.44931
Н	-2.224275	0.84795	1 439834	C	-1.420279	-1.262726	-0.226167
Н	-3.139953	0.560602	-0.061084	Õ	-0.595491	-2.105257	-0.633237
Н	0.131485	2.243654	0.975129	Č	-2.745375	-1.665494	0.361683
H	0.359507	2.834159	-0.687685	H	-2.922232	-2.720855	0.151893
Н	-2.111375	3.047452	0.404841	Н	-3.563631	-1.064695	-0.045389
Н	-1.999362	2.339126	-1.22182	Н	-2.724949	-1.515933	1.447115
Ν	2.457614	0.070686	-0.516426	Н	0.331385	0.158227	-1.788071
Н	2.422161	0.326488	-1.496288	Н	-2.390991	0.816246	1.244045
C	3.718836	-0.364922	0.059929	Н	-2.773597	1.402617	-0.391153
H	4.487605	-0.304539	-0.709358	Н	1.00245	2.522089	-0.540636
Н	3.998854	0.276356	0.90001	Н	-0.384178	2.402834	-1.640866
Н	3.645264	-1.396752	0.41476	Н	-0.447456	2.194637	1.414872
	5.015201	1.590752	0.11170	н	-1 43817	3 253941	0 392481
(b) <i>t</i>	-ts1			N	2 440981	-0.241116	-0 45445
				Н	2.510204	-0.146977	-1.460909
Ν	-1.147676	0.043033	-0.310214	C	3 61429	-0 648891	0.300121
С	0.149353	0.532	-0.75818	н	4 459011	-0 710892	-0 384846
С	-1.827683	1.006666	0.568511	Н	3 83929	0.080877	1 082112
С	0.03492	2.068649	-0.662195	Н	3 457588	-1 626568	0 764669
С	1.257269	0.01212	0.154538	11	5.157500	1.020500	0.701002
0	1.070943	-0.139207	1.373581	(d) <i>t</i> -1	ts2		
С	-1.21407	2.364134	0.199774				
С	-1.381773	-1.286888	-0.287133	Ν	-1.10696	-0.04529	-0.071691
0	-0.583993	-2.084924	-0.812559	С	0.105986	0.629423	-0.513982
С	-2.64251	-1.750756	0.388635	С	-2.255108	0.867973	0.000089
Η	-2.76464	-2.821266	0.221717	С	-0.123773	2.111548	-0.14918
Η	-3.516647	-1.216062	0.005796	С	1.344014	0.09488	0.194564
Η	-2.578337	-1.557296	1.465478	0	1.340971	-0.176709	1.405679
Η	0.337295	0.202643	-1.783311	С	-1.635147	2.265574	0.135534
Η	-1.63422	0.750097	1.615722	С	-1.205402	-1.387672	-0.139863
Η	-2.905802	0.976039	0.397873	0	-0.224952	-2.086569	-0.45653
Η	0.942216	2.500185	-0.23179	С	-2.542832	-1.993114	0.190227
Η	-0.080448	2.482224	-1.665817	Н	-2.461936	-3.079527	0.148579
Η	-0.957234	2.921958	1.102358	Н	-3.297152	-1.656909	-0.529363
Η	-1.928991	2.963186	-0.368512	Н	-2.873833	-1.687103	1.187464
Ν	2.441216	-0.208689	-0.423928	Н	0.225556	0.501414	-1.597274
Η	2.525932	-0.103647	-1.4282	Н	-2.889895	0.607908	0.849382
С	3.605693	-0.612774	0.346849	Н	-2.851177	0.780942	-0.915542
Η	3.451116	-1.596829	0.798213	Н	0.456405	2.366949	0.741846
Η	4.462954	-0.658521	-0.32361	Н	0.215457	2.754016	-0.963543
Η	3.809223	0.111029	1.140107	Н	-1.7905	2.655015	1.143763
				Н	-2.105058	2.959569	-0.563996
(c) <i>t</i>]	Fd			Ν	2.45065	0.028321	-0.552086
N	1 140200	0.051462	0 204675	Н	2.388403	0.235944	-1.541803
	-1.149299	0.031402	-0.2940/3	С	3.726385	-0.381576	0.010549
C	0.133218	0.30/000	-0.700779	Н	4.477157	-0.346954	-0.777901
C	-1.900124	1.133/32	0.292144	Н	4.022763	0.291533	0.819516
C	0.03347	2.041110	-0.090224	Н	3.665094	-1.400005	0.404479
	1.208093	-0.003122	0.14239/				
U	1.10510/	-0.141332	1.303094				

(e)	cAu

(e) <i>c</i> .	Au			Ν	-1.55527	-0.603576	-0.751235
NT	1 007124	0.050000	0.029526	Н	-0.724718	-0.795739	-1.299315
N	1.02/134	-0.059986	-0.038526	С	-2.839729	-1.109573	-1.209076
C	-0.001156	0.631351	0.741515	Н	-3.558358	-0.292107	-1.308333
C	1.75928	0.859294	-0.920687	Н	-2.696538	-1.581776	-2.180056
C	0.202294	2.127429	0.387727	Н	-3.23819	-1.845598	-0.505245
C	-1.431055	0.231764	0.402458				
0	-2.341985	0.491062	1.20/284	(g) <i>c</i> .	Ad		
C	1.618717	2.191402	-0.190816				
С	1.361217	-1.360309	0.098582	Ν	-1.024408	0.17188	0.008789
0	2.237911	-1.878114	-0.616586	С	0.087342	0.474722	-0.889884
С	0.642923	-2.152278	1.161786	С	-1.343897	1.293037	0.910988
Н	1.025685	-3.172962	1.155776	С	0.135953	2.011993	-0.847447
Η	-0.437252	-2.176885	0.985538	С	1.42658	-0.117526	-0.450245
Η	0.810202	-1.706591	2.147839	0	2.403049	-0.035906	-1.215711
Η	0.142605	0.453715	1.811341	С	-0.26065	2.328178	0.597954
Η	1.290358	0.887207	-1.912473	С	-1.795684	-0.932837	-0.032685
Η	2.790895	0.521826	-1.028628	0	-2.762311	-1.057339	0.741391
Η	-0.526023	2.428774	-0.373014	С	-1.46729	-1.985756	-1.059684
Η	0.060212	2.760395	1.265154	Η	-2.039679	-2.885772	-0.833798
Η	1.759124	3.046895	-0.855138	Н	-0.401185	-2.227514	-1.082221
Н	2.358297	2.247995	0.614511	Н	-1.750051	-1.623506	-2.054694
Ν	-1.659584	-0.315204	-0.793943	Н	-0.106316	0.102921	-1.899066
Н	-0.871778	-0.526318	-1.396375	Н	-1.333004	0.957771	1.951705
С	-3.004059	-0.660514	-1.227331	Н	-2.348346	1.6641	0.679136
Н	-3.640244	0.228329	-1.24517	Н	1.116207	2.401019	-1.131089
Н	-2.943341	-1.077964	-2.231597	Н	-0.611934	2.401819	-1.544857
Н	-3.447962	-1.400494	-0.555477	Н	0.59753	2.192485	1.264083
	0111702	11100171	0.0000177	Н	-0.628704	3.348762	0.720396
(f) <i>c</i> -	ts1			N	1.504712	-0.679619	0.757791
				Н	0.665178	-0 739634	1 323043
Ν	1.037487	0.086916	0.002173	C	2 746296	-1 253355	1 251888
С	-0.064072	0.563653	0.82786	н	2 569374	-1 646213	2 252295
С	1.394414	1.045847	-1.048015	Н	3 081963	-2 065373	0.600874
С	-0.005101	2.10484	0.69239	Н	3 52903	-0.491471	1 297384
С	-1.439518	0.046468	0.408757	11	5.52705	0.471471	1.277504
0	-2.415652	0.277835	1.143196	(h) <i>c</i> -	-ts2		
С	0.952005	2.40303	-0.484627	() •			
С	1.61672	-1.128878	0.095298	Ν	1.025842	0.16636	0.142056
0	2.477779	-1.490989	-0.726131	С	0.113745	-0.669675	-0.650396
С	1.207677	-2.011875	1.246767	С	2.298751	-0.584369	0.243535
Η	1.708206	-2.97463	1.142298	С	0.430506	-2.106004	-0.172031
Η	0.125074	-2.169443	1.275214	С	-1.367617	-0.388897	-0.440424
Η	1.504413	-1.551033	2.195143	0	-2.166533	-0.524193	-1.382058
Η	0.073119	0.253742	1.866789	С	1.859524	-2.039146	0.409911
Η	0.87329	0.795954	-1.980392	С	1.11246	1.523894	-0.015314
Η	2.467725	0.99116	-1.236695	Ο	2.137265	2.126941	0.329313
Η	-1.004637	2.512612	0.525653	С	-0.064192	2.271524	-0.587583
Η	0.374641	2.534994	1.620691	Н	0.247955	3.296525	-0.789699
Н	0.46713	3.003488	-1.256792	Н	-0.895931	2.289602	0.123526
Н	1.82193	2.959148	-0.128171	Н	-0.416929	1.8135	-1.517153

Η	0.32303	-0.554411	-1.720361	Ν	-1.760523	-0.079233	0.798168
Η	2.887807	-0.212652	1.081886	Н	-1.050307	0.081372	1.503414
Η	2.870528	-0.432958	-0.680756	С	-3.143161	0.248359	1.101007
Η	-0.28361	-2.411955	0.596252	Н	-3.219695	0.459992	2.167098
Н	0.343309	-2.803109	-1.007613	Н	-3.467992	1.127176	0.534248
Η	1.849825	-2.313141	1.467421	Н	-3.797263	-0.592202	0.85554
Η	2.546095	-2.713736	-0.105639				

Cartesian coordinates of transition state ts1 for puckering transition of Ac-*trans*-X-OMe optimized at SMD M06-2X/6-31+G(d) level of theory in water:

(a) A	Ac-Hyp-OMe			Н	-2.838219	0.578617	0.240658
	0.000040	0.471.606	0.0.0050	Н	0.898408	2.189791	-0.654069
N	0.899842	0.471636	-0.269353	Н	-0.055063	1.883219	-2.108803
C	-0.236833	-0.295161	-0.746442	Н	-1.983476	2.420362	-0.954984
C	1.666342	-0.291762	0.723429	0	2.53624	-0.11288	-0.458476
C	0.230424	-1.756745	-0.632854	C	3.66471	-0.320955	0.409284
C	-1.462237	-0.030354	0.11854	H	3.624944	-1.326128	0.833016
0	-1.442957	0.525373	1.199585	Н	4.543164	-0.20677	-0.222814
С	1.377558	-1.765689	0.392504	Н	3.662925	0.427504	1.204225
С	0.863542	1.824745	-0.321054	0	-1 041267	3.006757	0 709841
0	-0.029788	2.413188	-0.951433	н	-0 363145	2 697264	1 335378
С	1.95673	2.561728	0.40098	11	0.505145	2.077204	1.555570
Η	1.864024	3.628625	0.197175				
Η	2.942013	2.209022	0.081409	(c) A	c-Flp-OMe		
Η	1.873028	2.389417	1.479761	(-)	F		
Η	-0.485779	-0.028117	-1.775272	Ν	0.924678	0.431857	-0.278586
Η	1.323237	-0.043871	1.734472	С	-0.235364	-0.300675	-0.756354
Η	2.734319	-0.074644	0.64695	С	1.630108	-0.34616	0.747741
Н	-0.584528	-2.429342	-0.358613	С	0.196904	-1.772926	-0.646468
Η	0.629859	-2.079012	-1.597806	С	-1.452043	0.004295	0.10974
Η	1.10132	-2.305165	1.302597	0	-1.415682	0.599816	1.168502
0	-2.564035	-0.52008	-0.443563	С	1.302368	-1.800033	0.415826
С	-3.77786	-0.401677	0.319544	С	0.928654	1.788029	-0.33087
Н	-4.003282	0.651209	0.498261	0	0.071826	2.399076	-0.986902
Н	-4.552079	-0.860311	-0.292429	С	2.016539	2.493631	0.428126
Н	-3.672102	-0.933132	1.267391	Н	1.985438	3.557587	0.192829
0	2.491446	-2.415882	-0.214685	Н	3.001039	2.086925	0.17895
Н	3.187741	-2.517433	0.454467	Н	1.859698	2.355625	1.504138
				Н	-0.476756	-0.02671	-1.785058
				Н	1.254988	-0.088134	1.744484
(b) A	Ac-hyp-OMe			Н	2.707451	-0.172495	0.715483
	1.050450	0.060050	0.000016	Н	-0.636837	-2.434671	-0.406045
N	-1.052458	-0.360353	-0.392846	Н	0.629971	-2.092416	-1.597415
C	0.230113	0.111042	-0.890642	Н	1.047143	-2.376646	1.304307
C	-1.757532	0.691047	0.341562	0	-2.5647	-0.486614	-0.427936
C	0.044045	1.633791	-1.051163	C	-3.774244	-0.29442	0.327605
C	1.335117	-0.200065	0.107024	Н	-3.971805	0.772644	0.445395
0	1.156546	-0.45746	1.281872	Н	-4.560899	-0.767799	-0.256488
C	-1.240887	2.002315	-0.274218	Н	-3.680442	-0.773181	1.304192
C	-1.236865	-1.68698	-0.190426	F	2.439909	-2.421378	-0.132893
0	-0.405605	-2.51108	-0.604918	•	2	2.121070	0.122075
С	-2.486785	-2.101098	0.534804				
Η	-2.554997	-3.189077	0.537203	(d) A	c-flp-OMe		
Η	-3.374658	-1.676633	0.05669	~ /	L		
Η	-2.455765	-1.737012	1.567777	Ν	1.030242	-0.37338	0.37219
Η	0.47917	-0.375015	-1.835718	С	-0.239822	0.138329	0.861617
Η	-1.49488	0.659073	1.407466	С	1.776986	0.649655	-0.35842

С	-0.023852	1.663816	0.977006	С	2.834876	-2.161523	-0.258173
С	-1.360545	-0.183039	-0.115923	Н	3.714825	-2.074046	0.387744
0	-1.197926	-0.507442	-1.275629	Н	2.720878	-3.214082	-0.538916
С	1.308787	1.958286	0.276716	Н	3.0224	-1.586205	-1.173144
С	1.194303	-1.70794	0.205594				
0	0.348049	-2.505411	0.63905				
С	2.440468	-2.160383	-0.503006	(f) Ac	c-Mep-OMe		
Н	2.476439	-3.249833	-0.50009	NT	1 070400	0.244007	0 400100
Н	3.333748	-1.761115	-0.012925	N	-1.078489	-0.344997	-0.420189
Н	2.435271	-1.798966	-1.53721	C	0.2239	0.05/394	-0.922334
Н	-0.489257	-0.311614	1.824466	C	-1./3642	0.760425	0.28979
Н	1.50629	0.649182	-1.42211	C	0.095914	1.5785	-1.143//1
Н	2.851944	0.495598	-0.25915	C	1.30615	-0.254544	0.099381
Н	-0.825251	2.226743	0.490885	0	1.108107	-0.456569	1.282241
Н	0.010161	1.960823	2.025569	C	-1.129147	2.040122	-0.314499
Н	2.048725	2.375758	0.959971	С	-1.311025	-1.653858	-0.16571
0	-2.552782	-0.020339	0.450968	0	-0.512759	-2.527053	-0.547225
Č	-3.695947	-0.220275	-0.39927	С	-2.57298	-1.993315	0.577493
H	-3.701566	-1.243061	-0.780099	Н	-2.691519	-3.076687	0.605726
Н	-4.563098	-0.042747	0.233854	Η	-3.44515	-1.538256	0.098835
н	-3 671313	0.493843	-1 224806	Н	-2.514315	-1.608491	1.601901
F	1 132803	2 917099	-0.731632	Н	0.46723	-0.474904	-1.843932
1	1.152005	2.917099	0.751052	Н	-1.51711	0.694478	1.363815
				Н	-2.818695	0.707903	0.155179
(e) A	Ac-mep-OMe			Н	1.009697	2.099722	-0.841969
	· · · ·			Η	-0.058234	1.77007	-2.207406
Ν	0.849375	0.508672	-0.225256	Н	-1.859885	2.489008	-0.993538
С	-0.214495	-0.365065	-0.684035	0	2.51641	-0.242835	-0.455498
С	1.680267	-0.154915	0.788049	С	3.625379	-0.460006	0.434662
С	0.326639	-1.792931	-0.450666	Η	3.537723	-1.442789	0.901563
С	-1.480413	-0.129441	0.124847	Η	4.515345	-0.411606	-0.18977
0	-1.523134	0.431204	1.203153	Н	3.647189	0.321409	1.196943
С	1.581485	-1.652394	0.449335	С	-0.767766	3.053249	0.766276
С	0.703426	1.848425	-0.336436	Н	-0.361721	3.969014	0.324479
0	-0.226734	2.334032	-1.004047	Н	-1.646407	3.324628	1.361926
С	1.715717	2.70878	0.367787	Η	-0.012825	2.635334	1.44371
Η	2.733377	2.449347	0.060405				
Η	1.64542	2.55734	1.450717				
Н	1.517591	3.755378	0.135661	(g) A	c-Clp-OMe		
Н	-0.444063	-0.177714	-1.734913	NT	0.266255	0.006505	0 07004
Н	1.282829	0.058842	1.787659	N	0.366355	0.886525	-0.27224
Н	2.708151	0.212408	0.736359	C	-0.377157	-0.2659	-0.746761
Н	-0.435488	-2.432324	0.002262	C	1.328349	0.493102	0.764191
Н	0.596092	-2.236177	-1.413015	C	0.623066	-1.427675	-0.618379
Н	1.442028	-2.215961	1.375805	С	-1.616826	-0.489799	0.110838
0	-2.543273	-0.661934	-0.47441	0	-1.822908	0.047141	1.181512
Č	-3.786184	-0.590982	0.246102	C	1.620405	-0.98397	0.46819
H	-4.050534	0.451793	0.431009	C	-0.204487	2.117057	-0.338924
Н	-4,524236	-1.063104	-0.399452	0	-1.234295	2.299422	-1.005284
н	-3 697682	-1 132355	1 190182	С	0.470409	3.225542	0.418145
11	5.077002	1.152555	1.170102	Н	-0.0037	4.173019	0.16148

Η	1.538972	3.271638	0.188995	С	-1.624825	-0.491318	0.114633
Η	0.365513	3.049217	1.494964	0	-1.847151	0.059348	1.175095
Н	-0.698957	-0.127039	-1.780426	С	1.644035	-0.973173	0.49314
Η	0.875585	0.585792	1.757851	С	-0.211371	2.106974	-0.35014
Η	2.222021	1.117101	0.72551	0	-1.234977	2.280097	-1.030087
Η	0.136067	-2.370307	-0.36076	С	0.451102	3.227265	0.401185
Η	1.133045	-1.555379	-1.574938	Н	-0.031155	4.168428	0.136545
Η	1.540009	-1.583618	1.372424	Н	1.519623	3.281876	0.17355
0	-2.437682	-1.374563	-0.447324	Н	0.346448	3.05784	1.479066
С	-3.613696	-1.717743	0.308789	Н	-0.683455	-0.155085	-1.767821
Η	-4.227926	-0.828752	0.463501	Н	0.846255	0.59036	1.774041
Η	-4.14465	-2.449721	-0.296542	Н	2.194499	1.147798	0.758791
Η	-3.322858	-2.149708	1.268267	Н	0.123616	-2.369744	-0.269418
Cl	3.329475	-1.224565	-0.09073	Н	1.102523	-1.619829	-1.532962
				Н	1.555412	-1.561039	1.406589
				0	-2.439026	-1.383052	-0.443532
(h) A	c-clp-OMe			С	-3.62765	-1.713109	0.298055
N	0.034414	1 102515	0 451176	Н	-4.243922	-0.821549	0.427878
C	0.034414	-1.192313	0.451170	Н	-4.148902	-2.454711	-0.304029
C	-0.398037 1 344782	1.083/71	0.902054	Н	-3.354138	-2.129638	1.269428
C	0.012500	-1.063471	-0.193447	S	3.32802	-1.234598	-0.18242
C	1 103507	0.850171	0.00/063	Н	4.000437	-0.791214	0.894808
$\hat{0}$	-1.193397	0.850125	-0.094903				
C	2 025777	0.056235	0 573958	<i>(</i> 1)			
C	-0.901647	-2 113659	0.10293	(j) A	с-Мрс-ОМе		
$\tilde{0}$	-2 088133	-1 958214	0.426829	Ν	0.023368	1 212213	0 460001
Ċ	-0 427589	-3 313408	-0.66792	C	0.023300	-0.08981	0.980765
Н	-1 256154	-4 012038	-0 784597	C C	-1 311895	1 174218	-0 147145
Н	0.403393	-3.808621	-0.156959	C	-0.937296	-0.748707	1.365328
Н	-0.074754	-3.001768	-1.657674	C	1.123483	-0.901066	-0.085295
Н	-1.034464	-0.028016	1.841031	0	1.07363	-0.675172	-1.279117
Н	1.228022	-0.82715	-1.254949	Č	-2.028011	0.020714	0.581317
Н	1.902415	-2.01727	-0.111951	C	0.996844	2.075244	0.075832
Н	0.878428	1.881712	1.012725	Õ	2.184811	1.854524	0.358936
Н	1.086408	0.787889	2.383303	Č	0.567233	3.2939	-0.691389
Н	2.759273	-0.330622	1.278291	Н	1.42329	3.957402	-0.815377
0	-1.845454	1.8796	0.437046	Н	-0.240623	3.823661	-0.178761
Č	-2.579246	2.712615	-0.478521	Н	0.196762	2.993872	-1.678453
Н	-3.354262	2.1253	-0.974282	Н	1.066335	0.012739	1.840001
Н	-3.025355	3.49374	0.134015	Н	-1.229174	0.979975	-1.222945
Н	-1.898121	3.143985	-1.214385	Н	-1.82935	2.124501	-0.002601
Cl	2.97645	1.10473	-0.552757	Н	-0.936575	-1.818601	1.145236
				Н	-1.099495	-0.628886	2.438355
				Н	-2.757146	0.428705	1.283378
(i) A	c-mpc-OMe			0	1.786929	-1.920978	0.45117
NT	0.261.400	0.070001	0.061007	С	2.465233	-2.797546	-0.465798
IN C	0.361422	0.8/9991	-0.201327	Н	3.238464	-2.244352	-1.002209
C	-0.3/3685	-0.2/9995	-0.7285/2	Н	2.911709	-3.574231	0.152127
C	1.310108	0.500709	0.787418	Н	1.750238	-3.229812	-1.168108
L.	0.62018	-1.444189	-0.30/429				

c/	3
54	2

S	-3.041563	-1.006182	-0.539999	Н	1.13592	0.158688	1.813587
Н	-2.016855	-1.440242	-1.300259	Н	-1.39246	0.496002	-1.174103
				Н	-2.214855	1.517576	0.034815
				Н	-0.363851	-2.1053	0.932521
(k) A	c-mop-OMe			Н	-0.705013	-1.160625	2.386475
NT	0 106115	1 07722	0 470241	Н	-2.641733	-0.363116	1.406407
N C	-0.190115	1.07723	0.470241	0	2.330064	-1.482958	0.359794
C	0.519367	-0.093043	0.948959	С	3.217935	-2.103286	-0.587435
C	-1.492829	0.711022	-0.101556	Н	3.787382	-1.337392	-1.117143
C	-0.592028	-1.102363	1.303239	Н	3.879802	-2.732109	0.004738
C	1.430513	-0.63943	-0.140097	Н	2.645054	-2.707431	-1.293585
0	1.336651	-0.3/1312	-1.32205	0	-2.392331	-1.566276	-0.234057
C	-1.881215	-0.5/8915	0.645695	С	-3.668974	-1.218799	-0.749826
C	0.502595	2.184389	0.12065	Н	-3.621641	-0.302687	-1.352067
0	1.709385	2.283514	0.3954	Н	-3.995829	-2.046025	-1.381937
С	-0.252096	3.272937	-0.589574	Н	-4 387604	-1 075137	0.067394
Η	0.40882	4.127451	-0.735952	11	1.507001	1.075157	0.007571
Н	-1.130081	3.578828	-0.012538				
Н	-0.600862	2.911845	-1.563317				