Supporting Information for

Ag/AgCl Nanoparticles Embedded Porous TiO₂: Defect Formation triggered by light irradiation

Haneul Jeong^a, and Junhyung Lee^{b,c*}

^aBlue Wind Tech Co., Ltd. 34-5 Malgeunnae-gil, Uiwang-si, Gyeonggi-do, 16072, Korea

^bECA, Korea Advanced Nano Fab Center, 109, Gwanggyo-ro, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16229, Korea

^cDepartment of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea

Fig. S1. XRD pattern of (a) Ag/AgCl-pTiO₂ without aging (b) Ag/AgCl-pTiO₂ (c) Ag/AgCl-pTiO₂ before UV irradiation

Fig. S2. SEM images of (a,b) Cl-pTiO₂ (c,d) Ag/AgCl-pTiO₂

Fig. S3. SEM-EDS mapping images of Ag/AgCl-pTiO₂

Fig. S4. EDS analysis of Ag/AgCl-pTiO $_2$

Element	Atomic %	
0	73.84	
C1	0.50	
Ti	25.65	
Total:	100.00	

Fig. S5. EDS analysis of Cl-pTiO₂

Fig. S6. SEM-EDS mapping images of Ag/AgCl-pTiO₂ without aging

Fig. S7. Cl 2p XPS spectrum of the Cl-doped porous $\rm TiO_2$

Element	Chemical composition of Ag/AgCl-pTiO ₂ (Atomic %)		
	Nominal	EDS	XPS
Ti	28.9	23.7	26.7
0	57.8	73.9	66.9
Ag	5	2	4.6
C1	1.4	0.4	1.8

Table S1. Nominal and measured chemical composition of Ag/AgCl-pTiO_2 $\,$

Fig. S8. Adsorption capability of Ag/AgCl-pTiO $_2$ vs Cl-pTiO $_2$ for rhodamine B

Fig. S9. Adsorption capability of Ag/AgCl-pTiO₂ vs Cl-pTiO₂ for methylene blue

Fig. S10. Photocatalytic activity of commercial anatase TiO₂, pTiO₂, Cl-pTiO₂ for rhodamine B degradation

Fig. S11. XRD patterns of (a) pTiO₂ (b) Cl-pTiO₂ and (c) anatase TiO₂ (JCPDS: 00-021-1272)

Fig. S12. Adsorption capabilities of Ag/AgCl-pTiO₂-0.1, Ag/AgCl-pTiO₂-0.5, Ag/AgCl-pTiO₂ for methylene blue

Fig. S13. XPS data Ti of Ag/AgCl-pTiO₂ after MB adsorption

Fig. S14. XPS data Ag of Ag/AgCl-pTiO₂ after MB adsorption

Fig. S15. Photocatalytic degradation efficiency of aged Ag/AgCl-TiO₂ and unaged Ag/AgCl- $pTiO_2$ for methylene blue

Fig. S16. Cycling photocatalytic performance for rhodamine B degradation of Ag/AgCl-pTiO₂ after light irradiation (405 nm) for 60 minutes.