New Journal of Chemistry

Supporting Information

A novel turn-on fluorogenic aldehyde-appended salamo-like copper(II) complex probe for simultaneous detection of $\mathbf{S}_{2} \mathbf{O}_{3}{ }^{2-}$ and GSH

Yun-Hu Deng, Ruo-Yu Li, Jin-Qiang Zhang, Yue-Fei Wang, Jian-Ting Li, Wen-Ting Guo and Wei-Kui Dong *
School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
* Corresponding author. E-mail: dongwk@126.com. Fax: (+86) 931-4938703 (Prof. Dr. Wen-Kui Dong).

2. Experimental Section

2.1 Materials and Physical Measurements.

Unless specifically stated, all the chemicals in this paper were obtained from commercial sources and used directly without any further purification. For sensing studies of anions, all the anions were used in the form of sodium or potassium salts. A German Bruker AVANCE DRX-400 spectrometer was used to record the ${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ NMR spectra in CDCl_{3} solution and chemical shifts were recorded in ppm, where tetramethylsilane (TMS) was used as an internal standard. Electrospray ionization mass spectra (ESI-MS) were collected on the Bruker Daltonics Esquire 6000 mass spectrometer. IR spectra were recorded in the range of $4000-400 \mathrm{~cm}^{-1}$ using a Vertex70 FT-IR spectrophotometer via KBr pelletization technique. All pH values were measured by using a $\mathrm{pH}-10 \mathrm{C}$ digital pH meter. The electrochemical data were recorded with a CHI660E electrochemical workstation and 0.1 M tetrabutylammonium perchlorate (TBAP) dichloromethane solution was used as the supporting electrolyte. The working electrode was a glassy carbon electrode (GCE). The reference electrode was saturated calomel electrode (SCE), with graphite as counter electrode. Fluorescence and UV-vis measurements were done using a

Perkin-Elmer LS-55 spectrophotometer and Shimadzu UV-2550 spectrophotometer at room temperature, respectively.

2.2 Crystallographic data collection and refinement.

The single-crystal X-ray diffraction collection was taken on a Bruker Smart 1000 CCD area detector. Suitable crystal data of the copper(II) complex was obtained at 173 K on a Bruker Smart 1000 CCD area detector using Mo-K α radiation $(\lambda=$ $0.71073 \AA$). . Data collection and reduction were performed using the SMART and SAINT software. ${ }^{1}$ The crystal structure was determined by direct methods, and the subsequent refinement operation was agented by full-matrix least-squares on F^{2} using the SHELXTL-97 ${ }^{2}$ and Olex2 program. ${ }^{3}$ Moreover, all H atoms were placed geometrically, and all non-H atoms were refined anisotropically.

2.3 Synthesis and characterization of compounds.

The synthesis procedure of complex crystal $\left[\mathrm{Cu}_{4}(\mathrm{~L})_{2}(\mathrm{MeOH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{MeOH}$, probe $\mathbf{A S C}, \mathbf{A S C}-\mathbf{S}_{2} \mathbf{O}_{3}{ }^{\mathbf{2 -}}$ adduct and $\mathbf{A S C - G S H}$ adduct was carried out. The details of experiments were described as follows.

Preparation of $\mathbf{H}_{4} \mathbf{L}$. The 2-[O-(1-ethyloxyamide)]oxime-6-methoxyphenol and 2,3-dihydroxynaphthalene-1,4-dicarbaldehyde were prepared via the modified procedure of the reported method in the literature. ${ }^{4}$ The aldehyde-appended salamo-like ligand $\left(\mathbf{H}_{\mathbf{4}} \mathbf{L}\right)$ was synthesized based on the two precursors mentioned above. ${ }^{1} \mathrm{H}$ NMR spectrum of the ligand $\mathbf{H}_{4} \mathrm{~L}$ is shown in Fig. S1 and ESI-MS spectrum is displayed in Fig. S2.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 13.24(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 10.99(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH})$, 10.84 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{CHO}$), 9.92 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{OH}$), 9.12 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{C}=\mathrm{N}$), 8.35-8.36 (dd, 1H, NaH), 8.25 (s, 1H, -C=N), 7.96-7.97 (dd, 1H, NaH), 7.47-7.54 (m, 2H, NaH), 6.93-6.95 (dd, $1 \mathrm{H}, \mathrm{ArH}$), 6.80-6.83 (t, J = $4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.74-6.76(\mathrm{dd}, 1 \mathrm{H}, \operatorname{ArH}), 5.53(\mathrm{~s}, 1 \mathrm{H}$, -OH), 4.55-4.63 (m, 4H, $-\mathrm{CH}_{2}$). ESI-MS calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{7}: 410.11$ (M), found: $409.10(\mathrm{M}-\mathrm{H})$. IR (KBr pellet, cm^{-1}): 3429 ($\mathrm{vO}-\mathrm{H}$), 1743 ($\mathrm{vC=O)}$, $(\mathrm{vC}=\mathrm{N}), 1175$ (vAr-O) (Fig. S12). UV-Vis (DMF : $\left.\mathrm{H}_{2} \mathrm{O}, 20 \mu \mathrm{M}\right), \lambda_{\text {abs }}\left(\varepsilon \times 10^{4} \mathrm{dm}^{3}\right.$
$\mathrm{mol}^{-1} \mathrm{~cm}^{-1}$): 345 nm (2.04) and 406 nm (1.52).
Preparation of complex crystal $\left[\mathrm{Cu}_{4}(\mathrm{~L})_{2}(\mathrm{MeOH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{MeOH}$. A methanol solution (3 mL) of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(3.70 \mathrm{mg}, 0.01 \mathrm{mmol})$ was added drop-wise into a dichloromethane and chloroform ($3: 1 \mathrm{v} / \mathrm{v}$) mixed solution (4 mL) containing $\mathrm{H}_{4} \mathrm{~L}(2.05 \mathrm{mg}, 0.005 \mathrm{mmol})$, followed by drop-wise addition of diluted $\mathrm{NEt}_{3}(1.00 \mathrm{mg}, 0.01 \mathrm{mmol})$. The dark brown reaction mixture was stirred at ambient temperature for 0.5 h . Finally the black block-shaped crystals of the copper(II) complex, suitable for X-ray diffraction, were formed after four weeks on slow evaporation of the filtrate in air. $\left[\mathrm{Cu}_{4}(\mathrm{~L})_{2}(\mathrm{MeOH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{MeOH}$, yield: 7.24 mg (62.9\%).

Preparation of probe ASC. $\mathbf{H}_{\mathbf{4}} \mathbf{L}(8.2 \mathrm{mg}, 0.02 \mathrm{mmol})$ was dissolved in 2 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1.5 mL methanol solution containing $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(14.8 \mathrm{mg}, 0.04$ mmol) was added to the reaction mixture. The reaction mixture was stirred at RT for 0.5 h . The precipitate formed was filtered and washed with cold MeOH to give ASC as a black solid ($7.86 \mathrm{mg}, 73.8 \%$). ESI-MS calculated for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Cu}_{2}$: 531.94 (M), found: $532.95(\mathrm{M}+\mathrm{H}) . \mathrm{IR}\left(\mathrm{KBr}\right.$ pellet, $\left.\mathrm{cm}^{-1}\right)$: $1729(v \mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{N}), 1163$ (vAr-O), 549 ($v \mathrm{Cu}-\mathrm{N}$), 483 ($v \mathrm{Cu}-\mathrm{O}$) (Fig. S12). UV-Vis (DMF : $\mathrm{H}_{2} \mathrm{O}, 20 \mu \mathrm{M}$), $\lambda_{\text {abs }}(\varepsilon$ $\left.\times 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right): 382 \mathrm{~nm}(2.05)$.

Preparation of ASC- $\mathbf{S}_{2} \mathbf{O}_{3}{ }^{2-}$ and ASC-GSH adduct. $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(7.4 \mathrm{mg}$, $0.02 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (2 mL) of the ligand $\mathbf{H}_{\mathbf{4}} \mathbf{L}(4.1 \mathrm{mg}, 0.01 \mathrm{mmol})$. The mixture was stirred for 30 min at room temperature. A methanolic solution (0.5 mL) containing $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}(15.0 \mathrm{mg}, 0.06 \mathrm{mmol})$ and a little drops of water was added into it thereafter and stirring was continued for 1 hour. The light yellow colored mass ($\mathbf{A S C}-\mathbf{S}_{2} \mathbf{O}_{3}{ }^{\mathbf{2 -}}$) was obtained by filtration followed by washing with cold MeOH and then dried in vacuo for performing the characterization. The synthesis of ASC-GSH adduct is similar to that of $\mathbf{A S C}-\mathbf{S}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}}{ }^{\mathbf{2 -}}$, except the final methanolic solution containing GSH ($12.5 \mathrm{mg}, 0.04 \mathrm{mmol}$) and a little drops of water. ASC- $\mathbf{S}_{2} \mathbf{O}_{3}{ }^{2-}$. ESI-MS calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{7}: 410.11$ (M), found: $433.10(\mathrm{M}+\mathrm{Na})$. IR (KBr pellet, cm^{-1}): $1733(v \mathrm{C}=\mathrm{O}), 1610(\mathrm{cC}=\mathrm{N}), 1174$ ($\mathrm{vAr}-\mathrm{O}$) (Fig. S12). UV-Vis (DMF : $\left.\mathrm{H}_{2} \mathrm{O}, 20 \mu \mathrm{M}\right), \lambda_{\text {abs }}\left(\varepsilon \times 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right): 363 \mathrm{~nm}(2.09)$. ASC-GSH.

ESI-MS calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{7}: 410.11(\mathrm{M})$, found: $411.15(\mathrm{M}+\mathrm{H})$. IR (KBr pellet, $\left.\mathrm{cm}^{-1}\right)$: $1742(\mathrm{vC=O}), 1610(\mathrm{vC}=\mathrm{N}), 1175$ (vAr-O) (Fig. S12). UV-Vis (DMF : $\left.\mathrm{H}_{2} \mathrm{O}, 20 \mu \mathrm{M}\right), \lambda_{\text {abs }}\left(\varepsilon \times 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right): 346 \mathrm{~nm}(2.01)$ and $405 \mathrm{~nm}(1.53)$.

2.4 Analysis procedure.

A stock solution of probe ASC (1.0 mM) was prepared in 10 mL of DMF. Anions stock solutions of the potassium or sodium salts of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}, \mathrm{NO}_{2}{ }^{-}, \mathrm{SiO}_{3}{ }^{2-}, \mathrm{CO}_{3}{ }^{2-}$, $\mathrm{CrO}_{4}{ }^{2-}, \mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}, \mathrm{B}_{4} \mathrm{O}_{7}{ }^{2-}, \mathrm{F}^{-}, \mathrm{WO}_{4}{ }^{2-}, \mathrm{CN}^{-}, \mathrm{HS}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{SO}_{3}{ }^{2-}, \mathrm{S}^{2-}$ and SCN^{-}were prepared at 10 mM in 10 mL aqueous DMF solution respectively. Stock solutions (10 mM) of the various amino acids and peptide such as glutathione (GSH), Glu, Phe, Gly, Arg, Pro, Ser, Thr, Val, Ile, Met, Cys, Lys, Asn, Asp and Leu were separately dissolved in 10 mL aqueous DMF solution.

For the fluorescence experiment of probe ASC detecting $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$, the test solutions were prepared by placing $10 \mu \mathrm{~L}$ of the probe stock solution into a colorimetric dish with adding $10 \mu \mathrm{~L}$ each anionic stock solution, and diluting these stock solutions to 2 mL with DMF solution with 10% water. Also, in the fluorescence experiment of probe ASC detecting GSH, the test solutions were prepared by placing $20 \mu \mathrm{~L}$ of the probe stock solution into a colorimetric dish with adding $20 \mu \mathrm{~L}$ each anionic stock solution, and diluting these stock solutions to 2 mL with DMF solution with 10% water.

For UV-Visible absorbance spectral measurements, probe ASC was further diluted to 2 mL with DMF : water (9:1, v/v) to give desired concentration $20 \mu \mathrm{M}$ and then absorption spectra were recorded by adding $40 \mu \mathrm{~L}$ of each anions and amino acids to the solution of ASC at room temperature.

Determination of K_{a} of $\mathbf{H}_{4} \mathrm{~L}$ detecting $\mathrm{Cu}^{\mathbf{2 +}}$.

The binding constant was calculated from the UV titration curve according to Benesi-Hildebrand equation as shown below:
$\log (\mathrm{A}-\mathrm{Amin}) /(\mathrm{Amax}-\mathrm{A})=\log K_{a}+2 \log \left[\mathrm{Cu}^{2+}\right]$
$\mathrm{Ka}=6.09 \times 10^{9} \mathrm{M}^{-1}$

Determination of LOD, LOQ and K_{a} of ASC detecting $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$.

The fluorescence detection limit and quantification limit of ASC toward $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ was examined from the titration experiment of probe ASC with $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$. The below equations were used for determining the LOD, LOQ and K_{a}.

Linear Equation: $y=60.363 \times x+4.2308$
$\mathrm{S}=6.0363 \times 10^{7} \quad \delta=\sqrt{\frac{\sum\left(F_{0}-\bar{F}_{0}\right)^{2}}{N-1}}=3.0175 \quad(\mathrm{~N}=20) \quad \mathrm{K}=3$
LOD $=\mathrm{K} \times \delta / \mathrm{S}=1.4997 \times 10^{-7} \mathrm{M}$
$\mathrm{LOQ}=10 \times \delta / \mathrm{S}=4.9989 \times 10^{-7} \mathrm{M}$
Where $\mathrm{N}, \mathrm{S}, \mathrm{F}_{0}$ and \bar{F} are the number of replicates for the measurements, slope, fluorescence intensity and mean of fluorescence intensity of the blank solution of probe ASC, respectively.

The binding constant was calculated from the fluorescence titration curve according to Benesi-Hildebrand equation as shown below:
$\log \left(\mathrm{F}-\mathrm{F}_{\text {min }}\right) /\left(\mathrm{F}_{\max }-\mathrm{F}\right)=\log K_{a}+2 \log \left[\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right]$
$K_{a}=5.74 \times 10^{9} \mathrm{M}^{-1}$
Determination of LOD, LOQ and K_{a} of ASC detecting GSH.
The fluorescence detection limit and quantification limit of ASC toward GSH was examined from the titration experiment of probe ASC with GSH. The below equations were used for determining the LOD, LOQ and K_{a}.

Linear Equation: $y=68.726 \times x-321.87$
$\mathrm{S}=6.8726 \times 10^{7} \quad \delta=\sqrt{\frac{\sum\left(F_{0}-\bar{F}_{0}\right)^{2}}{N-1}}=3.0175 \quad(\mathrm{~N}=20) \quad \mathrm{K}=3$
LOD $=\mathrm{K} \times \delta / \mathrm{S}=1.3172 \times 10^{-7} \mathrm{M}$
$\mathrm{LOQ}=10 \times \delta / \mathrm{S}=4.3906 \times 10^{-7} \mathrm{M}$
Where $\mathrm{N}, \mathrm{S}, \mathrm{F}_{0}$ and \bar{F} are the number of replicates for the measurements, slope, fluorescence intensity and mean of fluorescence intensity of the blank solution of probe ASC, respectively.

The binding constant was calculated from the fluorescence titration curve according to Benesi-Hildebrand equation as shown below:
$\log \left(\mathrm{F}-\mathrm{F}_{\text {min }}\right) /\left(\mathrm{F}_{\max }-\mathrm{F}\right)=\log K_{a}+2 \log [\mathrm{GSH}]$
$K_{a}=1.11 \times 10^{9} \mathrm{M}^{-1}$

Table S1. Detailed crystal and structure refinement data of the copper(II) complex.

Complex CCDC	$\begin{gathered} {\left[\mathrm{Cu}_{4}(\mathrm{~L})_{2}(\mathrm{MeOH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{MeOH}} \\ 2071007 \end{gathered}$
Empirical formula	$\mathrm{C}_{45} \mathrm{H}_{44} \mathrm{Cu}_{4} \mathrm{~N}_{4} \mathrm{O}_{19}$
Formula weight	1199.00
Temperature (K)	173.0
Wavelength (\AA)	0.71073
Crystal system	Tetragonal
Space group	P42/n
a (\AA)	19.1223(3)
b (A)	19.1223(3)
c (\AA)	12.5887(3)
$\alpha{ }^{\circ}$)	90
$\beta\left({ }^{\circ}\right)$	90
$\gamma\left({ }^{\circ}\right)$	90
Volume (\AA^{3})	4603.21(18)
Z	4
Dc ($\mathrm{Mg} / \mathrm{m}^{3}$)	1.730
$\mu\left(\mathrm{mm}^{-1}\right)$	1.908
F(000)	2440.0
Crystal size (mm)	$0.19 \times 0.17 \times 0.16$
θ Range (${ }^{\circ}$)	2.21 to 26.753
	$-23 \leq h \leq 24$
Index ranges	$-24 \leq k \leq 24$
	$-15 \leq l \leq 15$
Reflections collected / unique	$57931 / 4881$
$\mathrm{R}_{\text {int }}$	0.0418
Completeness to $\theta=25.00$	99.8 \%
Data/restraints/parameters	4881/16 / 341
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0429$
	$\mathrm{wR} 2=0.1341$
R indices (all data)	$\mathrm{R} 1=0.0513$
	$\mathrm{wR} 2=0.1419$
$\Delta \rho_{\text {max, min }}\left(\mathrm{e} \AA^{-3}\right)$	1.08 and -0.77

Table S2. Selected bond distances (Å) and bond angles (${ }^{\circ}$) for the copper(II) complex.

Bond	Bond distance (\AA)	Bond	Bond distance (A)	Bond	Bond distance (\AA)
Cu1-O1	1.988(2)	$\mathrm{Cu} 2-\mathrm{O} 2^{\#}$	1.958(2)	Cu3-06	1.985(2)
Cu1-O6	1.956(2)	$\mathrm{Cu} 2-\mathrm{O} 2$	$1.958(2)$	Cu3-07	1.869(3)
Cu1-O8	2.357(2)	$\mathrm{Cu} 2-\mathrm{O} 1$	1.891(3)		
$\mathrm{Cu} 1-\mathrm{N} 1$	1.969 (3)	$\mathrm{Cu} 2-\mathrm{Ol}^{\text {\# }}$	1.891(3)		
$\mathrm{Cu} 1-\mathrm{N} 2$	2.003(3)	$\mathrm{Cu} 3-\mathrm{O6}^{\text {\# }}$	1.985(2)		
Bond	Bond angle (${ }^{\circ}$)	Bond	Bond angle (${ }^{\circ}$)	Bond	Bond angle (${ }^{\circ}$)
O2-Cu1-O8	96.90(10)	N2-Cu1-O8	103.13(11)	O6-Cu3-O6 ${ }^{\text {\# }}$	160.80(14)
O2-Cu1-N2	159.66(11)	N1-Cu1-N2	98.54(12)	O7-Cu3-O6 ${ }^{\text {\# }}$	96.79(10)
O6-Cu1-O2	89.15(10)	$\mathrm{O} 2{ }^{\#}-\mathrm{Cu} 2-\mathrm{O} 2$	164.80(15)	O7 ${ }^{\text {- }}$ - $\mathrm{Cu} 3-06$	96.78(10)
O6-Cu1-O8	85.94(9)	$\mathrm{O} 1^{\#}-\mathrm{Cu} 2-\mathrm{O} 2$	96.97(10)	O7-Cu3-O6	85.44(10)
O6-Cu1-N1	171.28(11)	$\mathrm{O} 1^{\#}-\mathrm{Cu} 2-\mathrm{O} 2^{\#}$	84.68(10)	$\mathrm{O} 7^{\#}-\mathrm{Cu} 3-\mathrm{O}^{\#}$	85.44(10)
O6-Cu1-N2	88.77(11)	$\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{O} 2^{\#}$	96.98(10)	O7-Cu3-O7 ${ }^{\text {\# }}$	166.71(19)
N1-Cu1-O2	85.62(11)	$\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{O} 2$	84.68(10)		
N1-Cu1-O8	87.76(11)	$\mathrm{O} 1^{\#}-\mathrm{Cu} 2-\mathrm{O} 1$	167.54(16)		

Symmetry code (\#):-x+3/2, $-\mathrm{y}+1 / 2, \mathrm{z}$

Table S3. Intramolecular and intermolecular interactions of note in the copper(II) complex.

Donor (D) \cdots Acceptor (A)	$\mathrm{D}-\mathrm{H}(\AA \mathrm{A})$	$\mathrm{H} \cdots \mathrm{A}(\mathrm{A})$	$\mathrm{D} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$ $($ deg. $)$	Symmetry Element
Hydrogen bond					
$\mathrm{O} 8-\mathrm{H} 8 \cdots \mathrm{O} 7^{\#}$	0.88	1.85	2.64	148	$3 / 2-\mathrm{x}, 1 / 2-\mathrm{y}, \mathrm{z}$
$\mathrm{O} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O} 1^{\#}$	0.87	2.07	2.69	128	$3 / 2-\mathrm{x}, 1 / 2-\mathrm{y}, \mathrm{z}$
$\mathrm{O} 9-\mathrm{H} 9 \mathrm{~A} \cdots \mathrm{O} 2$	0.87	2.34	2.91	123	
$\mathrm{O} 10-\mathrm{H} 10 \cdots \mathrm{O} 9$	0.84	2.25	2.84	127	
$\mathrm{O} 9^{\#}-\mathrm{H} 9 \mathrm{~A}^{\#} \cdots \mathrm{O} 2^{\#}$	0.87	2.34	2.91	123	
$\mathrm{O}^{\#}-\mathrm{H} 8^{\#} \cdots \mathrm{O} 7$	0.88	1.85	2.64	148	$3 / 2-\mathrm{x}, 1 / 2-\mathrm{y}, \mathrm{z}$
$\mathrm{O} 9^{\#}-\mathrm{H} 9 \mathrm{~B}^{\#} \cdots \mathrm{O} 1$	0.87	2.07	2.69	128	$3 / 2-\mathrm{x}, 1 / 2-\mathrm{y}, \mathrm{z}$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 3$	0.95	2.77	3.57	143	
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 3$	0.95	3.23	3.63	107	
$\mathrm{C} 22-\mathrm{H} 22 \mathrm{C} \cdots \mathrm{O} 3$	0.98	2.50	3.37	148	$1+\mathrm{y}, 3 / 2-\mathrm{x}, 3 / 2-\mathrm{z}$

Cartesian coordinates, used charge and multiplicity for all optimized structures of the stationary points.

ASC			
Charge $=0$ Multiplicity $=1$			
Cu	-1.29222	1.275	-0.25048
Cu	-0.51762	-1.65677	-0.70368
O	0.2602	-0.0929	-0.91577
O	-1.93392	-0.66681	-0.55693
O	1.14912	-2.34723	-0.61615
O	-1.52146	-3.04729	-0.21332
O	-0.29458	3.60392	0.64048
O	-3.34722	2.97698	0.13671
O	4.99819	-3.31323	0.21928
N	0.18168	2.40548	-0.02823
N	-3.12771	1.54516	0.11309
C	-2.96938	-1.27201	0.06589
C	-4.07363	-0.60331	0.53254
C	4.1923	-0.37431	0.1835
C	1.53284	-0.06914	-0.50906
C	2.08126	-1.38431	-0.41822
C	3.59889	0.91135	0.20196
C	-5.08223	-1.3783	1.12385
H	-5.96792	-0.90412	1.49722
C	-4.13358	0.86287	0.46996
H	-5.04326	1.35242	0.76374
C	1.43326	2.26529	0.1695
H	1.94082	3.05878	0.67935
C	2.18709	1.04203	-0.11189
C	5.56817	-0.48392	0.47718
H	6.00499	-1.45554	0.47102
C	4.40292	2.02859	0.50025
H	3.97717	3.0101	0.49318

C	3.38563	-1.54979	-0.09825
C	-2.76601	-2.63533	0.22455
C	6.31987	0.61936	0.76657
H	7.36385	0.51164	0.98356
C	5.73346	1.88928	0.77633
H	6.32756	2.754	0.99421
C	-4.9237	-2.74254	1.23787
H	-5.69819	-3.32722	1.69094
C	-2.40011	3.58799	-0.79943
H	-2.9703	4.28241	-1.39411
H	-2.01291	2.80592	-1.42031
C	3.86599	-2.93509	-0.03238
H	3.08767	-3.65504	-0.24058
C	-1.26003	4.36636	-0.15031
H	-0.72895	4.87602	-0.94275
H	-1.64252	5.08881	0.55172
C	-3.75588	-3.3862	0.80072
H	-3.63585	-4.4421	0.92812

L^{4-}

Charge $=-4$ Multiplicity $=1$
C
C
C
C

C

C
H
H
C
C
H
H
C

-4.76421	3.67656	-0.72911
-5.64302	2.66697	-0.39027
-5.2308	1.34365	-0.17901
-3.84342	1.05534	-0.27409
-2.97247	2.10808	-0.59181
-3.41496	3.39288	-0.83364
-5.12954	4.67322	-0.88669
-6.67314	2.9291	-0.27066
-6.17195	0.2784	0.17672
-3.3685	-0.30219	-0.00274
-1.91804	1.93327	-0.63569
-2.70922	4.16377	-1.07738
-4.21955	-1.29468	0.50416

C	-5.71381	-0.98514	0.61546
C	-1.99767	-0.62533	-0.2784
H	-1.43211	0.11667	-0.80975
C	0.75539	-2.7302	-0.24515
H	0.28072	-3.60043	-0.68064
H	0.82185	-2.87076	0.82511
C	2.14971	-2.56143	-0.82543
H	2.08076	-2.25108	-1.8592
H	2.681	-3.50367	-0.78038
N	-1.36055	-1.70306	0.00068
O	0.0041	-1.5477	-0.55428
N	4.20526	-1.42228	-0.56033
O	2.83069	-1.5703	-0.04224
O	-3.86401	-2.44675	0.83825
O	-6.43148	-1.90924	1.043
C	-7.57059	0.49406	0.04032
H	-7.81618	1.42924	-0.46017
O	-8.52693	-0.2259	0.3624
C	4.79128	-0.51246	0.12163
H	4.26037	-0.01372	0.91065
C	6.1398	-0.06607	-0.06134
C	6.98388	-0.62547	-1.07296
C	6.56904	0.95174	0.81673
C	8.24724	-0.16808	-1.20511
H	6.58953	-1.39984	-1.70438
C	7.97604	1.45709	0.65251
C	8.72945	0.8629	-0.34696
H	8.90262	-0.57287	-1.95732
H	9.74017	1.21217	-0.47416
O	5.82305	1.44918	1.72449
O	8.39245	2.39231	1.43203

$\mathrm{H}_{4} \mathrm{~L}$

Charge $=0$ Multiplicity $=1$

C

C
C
C

C
C
H
H
C
C
H
H
C
C
C
H
C
H
H
C
H
H
N
O
N

O

O

H
O
H
C
H

O

C

7.02824	3.08561	-0.00057
7.34885	1.74029	-0.00028
6.34529	0.73687	-0.00005
4.96208	1.13526	-0.0001
4.67496	2.52846	-0.00046
5.67702	3.48184	-0.00067
7.81618	3.83128	-0.00073
8.39446	1.45792	-0.00023
6.67619	-0.67358	0.00019
3.90565	0.12794	0.00015
3.65012	2.87332	-0.00062
5.4184	4.53534	-0.00095
4.26811	-1.21509	0.0003
5.63305	-1.60411	0.00034
2.5109	0.55065	0.00035
2.29013	1.61267	0.00095
-0.87368	-0.37743	0.00001
-0.85217	-1.01176	0.89035
-0.8521	-1.01111	-0.89079
-2.08874	0.5365	0.00028
-2.10691	1.17201	-0.89035
-2.10698	1.17139	0.89136
1.49957	-0.26553	-0.00008
0.27935	0.52153	0.00038
-4.46016	0.42348	0.00009
-3.2367	-0.3628	-0.00008
3.33565	-2.21927	0.00052
3.80349	-3.08528	0.00072
5.82771	-2.9573	0.00057
6.82078	-3.14389	0.00061
8.02852	-1.18197	0.00029
8.86349	-0.4754	0.00019
8.30672	-2.42074	0.00049
-5.48631	-0.36449	-0.00018

H	-5.36208	-1.44423	-0.00048
C	-6.84379	0.17725	-0.0001
C	-7.11169	1.56453	0.00026
C	-7.92925	-0.71254	-0.00039
C	-8.41969	2.03951	0.00032
H	-6.27178	2.24838	0.00049
C	-9.2451	-0.22377	-0.00033
C	-9.50179	1.14161	0.00003
H	-8.61113	3.10673	0.0006
H	-10.52456	1.50798	0.00007
O	-7.70628	-2.07854	-0.00075
H	-8.56591	-2.5492	-0.00093
O	-10.21959	-1.23087	-0.00065
H	-11.12708	-0.8778	-0.00063

Figure Legends:

Fig. S1. ${ }^{1} \mathrm{H}$ NMR spectrum of ligand $\mathbf{H}_{4} \mathrm{~L}$ in CDCl_{3}.

Fig. S2. ESI mass spectra of $\mathbf{H}_{4} \mathrm{~L}$ in DMF.

Fig. S3. Visualization of the copper(II) complex intramolecular interactions by IGM.

Fig. S4. Crystal packing 2D network structure of the copper(II) complex assisted supramolecular cyclic hydrogen-bonded motif.

Fig. S5. Crystal packing 3D layered structure of the copper(II) complex in solid-state viewed along a-axis (A), b-axis (B) and c-axis (C).

Fig. S6. (A) Benesi-Hildebrand plot (at 386 nm) of $\mathbf{H}_{\mathbf{4}} \mathbf{L}(20 \mu \mathrm{M})$, assuming $1: 2$ stoichiometry for association between $\mathbf{H}_{4} \mathrm{~L}$ and Cu^{2+}. (B) Job plot of $\mathbf{H}_{4} \mathrm{~L}$ and Cu^{2+}, where the absorbance at 386 nm was plotted against the mole fraction of Cu^{2+}. The total concentration of Cu^{2+} with $\mathbf{H}_{4} \mathrm{~L}$ was $2.0 \times 10^{-5} \mathrm{M}$.

Fig. S7. ESI-MS of ASC in aqueous DMF solution.

Fig. S8. Cyclic voltammetry curve of probe ASC at different scan rates [reference: saturated calomel electrode; supporting electrolyte: 0.1 M TBAP dichloromethane solution; scan rate: $=50 \mathrm{mV} \mathrm{s}^{-1}$].

Fig. S9. UV-absorption spectra of the aqueous DMF solution $\left(2.0 \times 10^{-5} \mathrm{M}\right)$ of $\mathbf{H}_{\mathbf{4}} \mathrm{L}$, ASC, ASC with $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ recorded at 298 K and atmospheric pressure.

Fig. S10. Absorption spectra of the aqueous DMF solution $\left(2.0 \times 10^{-5} \mathbf{M}\right)$ of $\mathbf{H}_{4} \mathbf{L}$, ASC, ASC with GSH recorded at 298 K and atmospheric pressure.

Fig. S11. Cyclic voltammogram of $\mathbf{H}_{4} \mathbf{L}, \mathbf{A S C}, \mathbf{A S C}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ adduct and $\mathbf{A S C}+\mathrm{GSH}$ adduct at room temperature (inset: CV of ASC) [reference: saturated calomel electrode; supporting electrolyte: 0.1 M TBAP dichloromethane solution; scan rate: $=$ $50 \mathrm{mV} \mathrm{s}^{-1}$].

Fig. S12. FT-IR data comparison of $\mathbf{H}_{4} \mathbf{L}(\mathbf{A}), \operatorname{ASC}(\mathbf{B}), \mathbf{A S C}-\mathbf{S}_{2} \mathbf{O}_{3}{ }^{2-}(\mathbf{C})$ and ASC-GSH (D) in solid-state.

Fig. S13. ESI-MS of ASC adding thiosulfate ion in aqueous DMF solution.

Fig. S14. ESI-MS of ASC adding glutathione in aqueous DMF solution.

Fig. S15. Electron cloud distributions and energy gap of the selected frontier orbitals of the copper(II) complex.

Fig. S17. Energy level diagram and frontier molecular orbitals for ASC, (L) $)^{\mathbf{4 -}}, \mathbf{H}_{\mathbf{4}} \mathbf{L}$ and contribution analysis of orbital transition in electron excitation.

Fig. S1.

DENGYUNHU-1\#31-59 RT: 0.13778-0.26258 AV: 29						
T: FTMS - p ESI Full ms [170.0000-1200.0000]$\mathrm{m} / \mathrm{z}=407.30160-412.86909$						
m/z	Intensity	Relative	Resolution	Charge	Delta (ppm)	Composition
407.65716	169997.3	0.62	54117.34	1.00		
409.10401	27322390.0	100.00	53173.61	1.00	-0.28	$\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}_{7} \mathrm{~N}_{2}$
410.10760	6262644.0	22.92	53648.25	1.00		
411.11003	958791.2	3.51	51538.88	1.00		
412.11245	110921.4	0.41	50605.46	1.00		

Fig. S2.

Wen-Kui Dong et al.

Fig. S3.

Fig. S4.

Wen-Kui Dong et al.

Fig. 55.

Fig. S6.

Wen-Kui Dong et al.

Fig. S7.

Wen-Kui Dong et al.

Fig. S8.

Fig. S9.

Fig. S10.

Fig. S11.

Fig. S12.

Fig. S13.

Wen-Kui Dong et al.

Fig. S14.

Fig. S15.

Wen-Kui Dong et al.

Fig. S16.

Fig. S17.

References

1. Bruker AXS Inc. SMART and SAINT, Madison, WI, USA, 1998.
2. (a) G. M. Sheldrick, Acta Crystallogr. A, 2008, 64, 112; (b) G. M. Sheldrick. SHELXS-97 and SHELXL-97, Fortran Programs for Crystal Structure Solution and Refinement. University of Gottingen, Gottingen, 1997.
3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, J. Appl. Crystallogr., 2009, 42, 339-341.
4. C. Liu, X.-X. An, Y.-F. Cui, K.-F. Xie and W.-K. Dong, Appl. Organomet. Chem., 2020, 34, e5272.
