Supporting information for

Thermal effect on pseudocapacitive behavior of high-performance flexible supercapacitors based on polypyrrole-decorated carbon cloth electrodes

Jia-hua Liu,^{a,b,1} Xiao-ying Xu,^{b,1} Chen Liu,*^b Da-Zhu Chen*^b

- ^{a.} Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
- ^{b.} Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials
 Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
- ¹ These authors contributed equally.

^{*} Corresponding author. E-mail: liuchen@szu.edu.cn(C. Liu); dzchen@szu.edu.cn (D. -Z. Chen)

Figure S1. EDS mappings of CC/PPy. (a) C element. (b) O element. (c) N element. (d) Cl element.

Figure S2. XPS spectrum of CC/PPy.

Figure S3. XPS spectrum of CC/PPy. (a) C 1s. (b) N 1s.

Figure S4. CV curves collected over diverse potentials of CC/PPy electrode in a threeelectrode system at a scan rate of 50 mV s⁻¹

Electrode materials	Electrolyte	Areal capacitance (mF cm ⁻²)	Reference
CC/PPy	PVA-H ₃ PO ₄	110.6	This work
Co(OH) ₂ /VN	PVA-KOH	21	1
Au/MnO ₂ -Au/PPy	PVA-LiCl	1.27	2
MnO ₂ /rGO/C-Cu/rGO	PAAK-KCl	50.8	3
CNT/PANI	PVA-H ₂ SO ₄	38	4
CNT/Co ₃ O ₄	PVA-H ₂ SO ₄	52.6	5
rGO/PANI/kapton	PVA-H ₂ SO ₄	3.31	6

Table S1. Comparison of specific capacitances of supercapacitors.

Figure S5. Colour change of PVA-H₃PO₄ electrolyte at different temperatures and times. The electrolyte was coated on glass slides (3 cm \times 2.5 cm) and then placed on a thermostat of 20, 40 and 60 °C to observe the colour change of electrolyte.

Figure S6. Areal specific capacitance of CC/PPy supercapacitor at various scan rates with different temperatures.

Figure S7. The coulombic efficiency of CC/PPy supercapacitor at various temperatures.

Figure S8. Leakage current curves of the all-solid-state supercapacitor device charged at 2 mA to a floating potential of 0.6 V and kept at 0.6 V for 2 h at different temperatures.

References

- Wang, S.; Wu, Z.-S.; Zhou, F.; Shi, X.; Zheng, S.; Qin, J.; Xiao, H.; Sun, C.; Bao, X., All-Solid-State High-Energy Planar Hybrid Micro-Supercapacitors Based on 2d VN Nanosheets and Co(OH)₂ Nanoflowers. *npj 2D Materials and Applications* 2018, 2.
- Zhang, C.; Xiao, J.; Qian, L.; Yuan, S.; Wang, S.; Lei, P., Planar Integration of Flexible Micro-Supercapacitors with Ultrafast Charge and Discharge Based on Interdigital Nanoporous Gold Electrodes on a Chip. *Journal of Materials Chemistry A* 2016, *4*, 9502-9510.
- Zhang, Z.; Xiao, F.; Wang, S., Hierarchically Structured MnO₂/Graphene/Carbon Fiber and Porous Graphene Hydrogel Wrapped Copper Wire for Fiber-Based Flexible All-Solid-State Asymmetric Supercapacitors. *Journal of Materials Chemistry A* 2015, *3*, 11215-11223.
- Wang, K.; Meng, Q.; Zhang, Y.; Wei, Z.; Miao, M., High-Performance Two-Ply Yarn Supercapacitors Based on Carbon Nanotubes and Polyaniline Nanowire Arrays. *Advanced Materials* 2013, 25, 1494-1498.

- Su, F.; Lv, X.; Miao, M., High-Performance Two-Ply Yarn Supercapacitors Based on Carbon Nanotube Yarns Dotted with Co₃O₄ and NiO Nanoparticles. *Small* 2015, *11*, 854-861.
- Song, B.; Li, L.; Lin, Z.; Wu, Z.-K.; Moon, K.-s.; Wong, C.-P., Water-Dispersible Graphene/Polyaniline Composites for Flexible Micro-Supercapacitors with High Energy Densities. *Nano Energy* 2015, *16*, 470-478.