Supplementary Information for

Tartrate-stabilized titanium-oxo clusters containing sulfonate chromophore ligands: Synthesis, crystal structures and photochemical properties

Wen-Yu Mou, ^{ab} Bin Xie, ^{*ac} Xiao-Long Li, ^a Chuan Lai, ^{*de} Tao Li, ^f Luo Chen, ^a Jian-Shen Feng, ^b Xiao-Xue Bai, ^a Yu Wu, ^b Wei-Ping Wu, ^b Dong-Liang Zhang, ^f and Yun-Tian Gu ^a

^a School of Materials Science and Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, P. R. China

^b College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China

^c Sichuan Province Key Laboratory of Comprehensive Utilization of Vanadium and Titanium Resources, Panzhihua University, Panzhihua 617000, China

^d School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000, P. R. China

e Sichuan Sizhong Basalt Fiber Technology Research and Development Co., Ltd, Dazhou 635000, P. R. China

^f School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China

^{*}Correspondening auther

Bin Xie, School of Materials Science and Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China.

Chuan Lai, School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000, China.

E-mail address: xiebin@suse.edu.cn (B. Xie); 20150002@sasu.edu.cn (C. Lai)

CONTENTS

 Table S1 Geometrical parameter of 1 and 2: Internal coordinates at DFT/B3LYP

 method with 6-311G* and LANL2DZ basis set.

Table S2 Bond lengths(Å) for complex 1.

Table S3 Bond angles (°) for complex 1.

Table S4 Bond lengths (Å) for complex 2.

Table S5 Bond angles (°) for complex 2.

Figure S1 Photo of the crystals1 (a) and 2 (b).

Figure S2 Comparison of experimental and computed FT-IR spectra of 1 and 2.

Figure S3 TGA curves of 1 and 2. All the two samples were treated by vacuum drying.

Figure S4 Mott-Schottky plots for 1 and 2 in 0.1 M Na₂SO₄ aqueous solution.

Figure S5 Full range J-V curves of 1 and 2 in light-off (black) and light-on (red) conditions.

Figure S6 XRD patterns of **1** and **2** under solvothermal treatment at room temperature for 24 h in different organic solvents.

Figure S7 (a) The hydrogen bonds between adjacent TOCs of **1**; (b) The 3D supramolecular network of **1**. The most hydrogen atoms are omitted for clarity.

Figure S8 (a) The hydrogen bonds between adjacent TOCs of 2; (b) The 3D supramolecular network of 2 viewing along *a*-axis. The most hydrogen atoms are omitted for clarity.

	1		
Ti	-2.47259179	1.05778797	1.70748006
Ti	-2.97394888	1.26918024	-1.46357550
S	-3.13418241	-1.77612933	-0.12147738
0	-1.35724250	0.49405939	-2.51071701
0	-1.52806234	0.95595958	-0.04498077
0	0.72785215	-0.27297759	-2.46209409
0	-2.88977625	-1.10857170	1.19717774
0	-3.85930627	1.46605199	0.34316446
0	-3.48117673	-0.77169970	-1.19096136
0	-1.97433199	2.72409205	2.11694407
0	-2.03551685	-2.66542858	-0.54414468
0	-4.18202873	1.40098527	-2.77237834
0	-3.42776256	0.67969149	3.16456679
0	-2.39238474	2.95788929	-1.64901970
Ν	-4.16340008	-3.98376612	-1.98025246
Н	-4.35725589	-4.83417797	-2.48289252
Н	-3.18701257	-3.72628738	-1.93726933
С	-0.28263575	0.23003909	-1.90548377
С	-4.59200599	-2.76353623	0.09483143
С	-4.93014917	-3.74158044	-0.86699276
С	-0.24437374	0.58805737	-0.42460163
Н	0.44229897	1.42813181	-0.29828578
С	-6.93976697	-4.18233608	0.43811683
Н	-7.85917455	-4.74535205	0.56158094
С	-5.40088625	-2.51309179	1.20159260
Н	-5.08119957	-1.76243605	1.91219822
С	-6.13504417	-4.44060442	-0.65860542
Н	-6.42843850	-5.19665373	-1.38091754
С	-6.58016362	-3.21949303	1.38419132
Н	-7.20706631	-3.02650016	2.24655613
С	-5.20431074	1.90301661	0.64164064
Н	-5.31482483	1.79054610	1.72423743
С	-6.20916639	1.00459600	-0.06355346
Н	-6.09067181	1.06165560	-1.14652150
Н	-7.22738994	1.31165141	0.19222556
Н	-6.07912553	-0.03595590	0.23373598
С	-1.57174245	3.47584165	3.25225298
Н	-2.01900101	3.00248706	4.13672931
С	-1.37351937	3.80765839	-1.13022826
Н	-1.03341392	3.37613381	-0.18458770

Table S1 Geometrical parameter of 1 and 2: Internal coordinates at DFT/B3LYPmethod with 6-311G* and LANL2DZ basis set.

С	-4.42560275	2.18382610	-3.92944056
Н	-3.94998048	3.15912903	-3.75537698
С	-0.05098568	3.42574412	3.35868791
Н	0.29141369	2.39899306	3.48642610
Н	0.29196413	4.01829007	4.21243581
Н	0.40342565	3.81905682	2.44632573
С	-0.21509623	3.86623044	-2.11991315
Н	0.18707055	2.87445637	-2.32640064
Н	0.59757886	4.47224799	-1.71228023
Н	-0.54366737	4.30223656	-3.06728109
С	-3.76528309	1.50314419	-5.12283832
Н	-2.69940408	1.36205143	-4.93512882
Н	-3.88653319	2.10609580	-6.02747354
Н	-4.21356852	0.52103529	-5.29358270
С	-3.89210370	-0.15988270	4.20309358
Н	-4.85233792	-0.57754705	3.86971710
С	-5.92903594	2.36109134	-4.09519780
Н	-6.41344384	1.38960357	-4.22261562
Н	-6.15004856	2.97724763	-4.97117228
Н	-6.36044796	2.84695696	-3.21715474
С	-1.98065754	5.17786961	-0.86355308
Н	-2.36678840	5.61278628	-1.78949550
Н	-1.22722629	5.85478549	-0.45087144
Н	-2.80039017	5.09935766	-0.14919033
С	-2.11540599	4.89085355	3.10425233
Н	-1.69196528	5.36875794	2.21783674
Н	-1.86192617	5.49549446	3.97955652
Н	-3.20264957	4.87499809	2.99987000
С	-4.12681844	0.69212454	5.44573878
Н	-3.18047195	1.11046217	5.79837165
Н	-4.56165178	0.09348255	6.25092906
Н	-4.80544544	1.51810992	5.22185334
С	-2.90141756	-1.29589463	4.43743830
Н	-2.77481944	-1.88370634	3.52906930
Н	-3.25644957	-1.94983263	5.23894456
Н	-1.92622973	-0.89230488	4.71762671
С	-5.33687697	3.37293472	0.27400124
Н	-4.58076865	3.96091083	0.79595324
Н	-6.32555877	3.74892741	0.55163735
Н	-5.20034149	3.51842753	-0.79977598
Ti	2.47260272	-1.05780059	-1.70747934
Ti	2.97396229	-1.26918250	1.46357689
S	3.13413260	1.77613125	0.12147540
0	1.35724138	-0.49409576	2.51072051

0	1.52806897	-0.95599501	0.04498272
0	-0.72785620	0.27292993	2.46209564
0	2.88972876	1.10856559	-1.19717592
0	3.85932607	-1.46603372	-0.34316270
0	3.48113804	0.77170986	1.19096336
0	1.97438003	-2.72411503	-2.11694651
0	2.03546327	2.66542553	0.54414220
0	4.18204222	-1.40095795	2.77238272
0	3.42776227	-0.67968241	-3.16456773
0	2.39243442	-2.95790411	1.64902775
Ν	4.16330954	3.98379400	1.98021896
Н	4.35714663	4.83421511	2.48285053
Н	3.18692662	3.72629936	1.93722749
С	0.28262814	-0.23009891	1.90548900
С	4.59194778	2.76354763	-0.09484315
С	4.93007404	3.74160575	0.86697075
С	0.24437714	-0.58810428	0.42460324
Н	-0.44228961	-1.42818207	0.29828214
С	6.93969389	4.18237028	-0.43813187
Н	7.85909555	4.74539562	-0.56159741
С	5.40083587	2.51310019	-1.20159801
Н	5.08116113	1.76243314	-1.91219698
С	6.13496198	4.44064183	0.65858296
Н	6.42834288	5.19670306	1.38088807
С	6.58010647	3.21951273	-1.38419794
Н	7.20701582	3.02651782	-2.24655742
С	5.20433604	-1.90298210	-0.64163938
Н	5.31485483	-1.79049409	-1.72423393
С	6.20917925	-1.00456374	0.06357505
Н	6.09068017	-1.06164364	1.14654155
Н	7.22740698	-1.31160472	-0.19220460
Н	6.07912966	0.03599206	-0.23369667
С	1.57180275	-3.47587054	-3.25225585
Н	2.01904826	-3.00250349	-4.13673214
С	1.37358524	-3.80769531	1.13024023
Н	1.03348472	-3.37619341	0.18458767
С	4.42562579	-2.18378506	3.92945226
Н	3.95001987	-3.15909715	3.75539536
С	0.05104470	-3.42580474	-3.35868603
Н	-0.29137723	-2.39906033	-3.48641729
Н	-0.29189477	-4.01835356	-4.21243614
Н	-0.40335461	-3.81913198	-2.44632421
С	0.21515211	-3.86626011	2.11991360
Н	-0.18702778	-2.87448608	2.32637590

Н	-0.59751145	-4.47229555	1.71228411	
Н	0.54371751	-4.30224305	3.06729422	
С	3.76529218	-1.50310391	5.12284271	
Н	2.69941153	-1.36202931	4.93512906	
Н	3.88654925	-2.10604638	6.02748307	
Н	4.21356182	-0.52098664	5.29358048	
С	3.89207984	0.15989876	-4.20309949	
Н	4.85231285	0.57757497	-3.86973440	
С	5.92906139	-2.36102478	4.09521437	
Н	6.41345352	-1.38952814	4.22262456	
Н	6.15008190	-2.97716972	4.97119485	
Н	6.36048293	-2.84689143	3.21717653	
С	1.98074137	-5.17790564	0.86360117	
Н	2.36686664	-5.61279808	1.78955734	
Н	1.22732202	-5.85483878	0.45092609	
Н	2.80048106	-5.09940050	0.14924601	
С	2.11549629	-4.89087172	-3.10426309	
Н	1.69206929	-5.36878831	-2.21784767	
Н	1.86202519	-5.49551452	-3.97956852	
Н	3.20274000	-4.87499439	-2.99988560	
С	4.12678999	-0.69210401	-5.44574868	
Н	3.18044441	-1.11045327	-5.79837017	
Н	4.56160558	-0.09345555	-6.25094372	
Н	4.80543034	-1.51808094	-5.22187262	
С	2.90137634	1.29589832	-4.43743024	
Н	2.77478195	1.88370716	-3.52905883	
Н	3.25639016	1.94984185	-5.23894002	
Н	1.92619026	0.89229636	-4.71760701	
С	5.33691443	-3.37290438	-0.27402177	
Н	4.58081402	-3.96087920	-0.79598646	
Н	6.32560100	-3.74888344	-0.55165932	
Н	5.20037532	-3.51841502	0.79975258	
	2			
Ti	-3.01495769	-1.12999910	-1.35152900	
Ti	-2.56079618	1.89723482	-0.31503240	
S	-3.10695313	-0.47370041	1.99600399	
0	-1.55159123	0.20115272	-0.92473217	
0	0.76850062	-2.43644584	-0.48874640	
Ο	-1.31370045	-2.28910858	-1.23015978	
0	-3.96163094	0.59637159	-0.94932381	
Ο	-2.86672996	-1.41708276	0.85078900	
0	-2.69817424	0.92546471	1.61003335	
0	-2.06892323	2.74392115	-1.81077651	
0	-3.01815887	-1.03102129	-3.13919128	

0	-4.11634479	-2.52753291	-1.22619756
0	-3.66435887	3.19735009	0.26128847
0	-2.46720524	-0.95076884	3.22775225
С	-0.24953477	-1.76745134	-0.79936434
С	-4.87451656	-0.42295235	2.23714414
С	-5.56091140	0.75237580	1.93495136
Н	-4.99181207	1.62583926	1.64064815
С	-0.25470309	-0.23947787	-0.68682798
Н	0.41878495	0.13099292	-1.46457526
С	-5.54429762	-1.58800185	2.66279878
Ν	-4.87828932	-2.76317143	2.97292451
Н	-5.41885229	-3.43593955	3.49424548
Н	-3.93479699	-2.66093774	3.32235097
С	-6.95051350	0.80506567	1.98743008
С	-6.94801362	-1.52362237	2.70028349
Н	-7.50481043	-2.40498437	3.00640963
С	-7.62623269	-0.36177151	2.36554734
Н	-8.71208350	-0.35946992	2.40749057
С	-5.26487681	1.03567291	-1.42748551
Н	-5.59717089	1.77921290	-0.69895141
С	-4.38209386	-3.68363194	-0.43750252
Н	-4.02464705	-3.47324137	0.57351655
С	-3.21095324	-1.95205740	-4.20771615
Н	-3.87148900	-2.74523743	-3.83017659
С	-6.23652110	-0.13359306	-1.42894422
Н	-5.96218783	-0.88094965	-2.17560441
Н	-7.24346322	0.22754783	-1.65580061
Н	-6.25416397	-0.61702946	-0.45294747
С	-5.88825743	-3.90656857	-0.40133137
Н	-6.39090856	-3.04439010	0.04084081
Н	-6.12666279	-4.78801415	0.20096357
Н	-6.27956215	-4.05890765	-1.41132644
С	-0.90305949	2.74405415	-2.64136759
Н	-0.06216612	2.40739709	-2.02443995
С	-0.63855414	4.17431879	-3.08902145
Н	-1.47907942	4.54947507	-3.67969470
Н	0.26560548	4.21841252	-3.70246118
Н	-0.50368193	4.82587005	-2.22284930
С	-3.81160592	4.58198926	-0.03976205
Н	-3.50292031	4.71464550	-1.08580223
С	-5.10206448	1.68701031	-2.79384783
Н	-4.43993954	2.55154116	-2.73586251
Н	-6.07321742	2.01056440	-3.17926848
Н	-4.65978199	0.97553990	-3.49234061

С	-7.70139596	2.05488735	1.60206783
Н	-8.51201513	2.27237664	2.30329603
Н	-8.15271002	1.95619443	0.60807602
Н	-7.04173488	2.92330741	1.57406254
С	-2.87105120	5.37210789	0.86467118
Н	-3.14834392	5.23200766	1.91286624
Н	-2.91167055	6.43978179	0.62980107
Н	-1.84585135	5.01974530	0.73540712
С	-1.09877706	1.76733316	-3.79321008
Н	-1.41009273	0.79439845	-3.41609967
Н	-0.16040338	1.64861502	-4.34050349
Н	-1.87240835	2.12906192	-4.47699744
С	-3.60315539	-4.85302625	-1.02988251
Н	-3.94666247	-5.06771028	-2.04636014
Н	-3.73569702	-5.75258824	-0.42138828
Н	-2.54070846	-4.60701869	-1.06733018
С	-5.27440019	4.97085002	0.12534306
Н	-5.91090045	4.35490858	-0.51438589
Н	-5.42863466	6.01971808	-0.14327651
Н	-5.58854134	4.83201008	1.16329823
С	-3.88300565	-1.22300046	-5.36448811
Н	-4.85565525	-0.82878178	-5.06208521
Н	-4.03542214	-1.90050906	-6.20940537
Н	-3.26045660	-0.38799577	-5.69610910
С	-1.85778588	-2.54975356	-4.58077024
Н	-1.18067662	-1.76462533	-4.92769600
Н	-1.96887260	-3.29225471	-5.37634189
Н	-1.40656788	-3.02972435	-3.71118545
Ti	3.01497309	1.13000135	1.35153335
Ti	2.56080501	-1.89720352	0.31502934
S	3.10693046	0.47374978	-1.99598537
0	1.55159180	-0.20118410	0.92480721
0	-0.76850280	2.43639522	0.48878635
0	1.31368609	2.28907949	1.23024229
0	3.96167358	-0.59634345	0.94921325
0	2.86671702	1.41711756	-0.85075172
0	2.69809889	-0.92540379	-1.61005517
0	2.06901693	-2.74389193	1.81079282
0	3.01817850	1.03095421	3.13919059
0	4.11629672	2.52758025	1.22622768
0	3.66430420	-3.19732219	-0.26139849
0	2.46724447	0.95087922	-3.22774244
С	0.24953269	1.76741621	0.79942915
С	4.87449791	0.42296504	-2.23707047

С	5.56085081	-0.75240882	-1.93499662
Н	4.99172824	-1.62588378	-1.64076826
С	0.25469948	0.23944313	0.68690554
Н	-0.41878134	-0.13101821	1.46466182
С	5.54431270	1.58803605	-2.66262155
Ν	4.87831259	2.76324892	-2.97263302
Н	5.41889912	3.43603927	-3.49390786
Н	3.93484338	2.66103324	-3.32213560
С	6.95045995	-0.80513321	-1.98747776
С	6.94801854	1.52361748	-2.70012456
Н	7.50484265	2.40498096	-3.00619731
С	7.62620887	0.36170895	-2.36549738
Н	8.71205794	0.35937796	-2.40746123
С	5.26494825	-1.03560251	1.42732748
Н	5.59724196	-1.77913942	0.69878934
С	4.38190156	3.68376939	0.43760732
Н	4.02439254	3.47342970	-0.57340191
С	3.21099812	1.95195345	4.20774637
Н	3.87139545	2.74523140	3.83017414
С	6.23653793	0.13371529	1.42872824
Н	5.96225472	0.88101499	2.17546123
Н	7.24352852	-0.22738295	1.65543907
Н	6.25403454	0.61720675	0.45275659
С	5.88804703	3.90680471	0.40134090
Н	6.39071896	3.04467474	-0.04090055
Н	6.12635423	4.78828896	-0.20093601
Н	6.27941219	4.05912727	1.41131506
С	0.90319354	-2.74413979	2.64140935
Н	0.06226565	-2.40740600	2.02456286
С	0.63869616	-4.17446221	3.08889442
Н	1.47925931	-4.54970945	3.67945749
Н	-0.26542080	-4.21862459	3.70239165
Н	0.50375474	-4.82589205	2.22264259
С	3.81157825	-4.58197315	0.03952866
Н	3.50300241	-4.71471288	1.08559364
С	5.10222910	-1.68691894	2.79371054
Н	4.44012378	-2.55146947	2.73578039
Н	6.07341280	-2.01044244	3.17908015
Н	4.65997211	-0.97544664	3.49221545
С	7.70126605	-2.05499236	-1.60209076
Н	8.51306856	-2.27149678	-2.30224414
Н	8.15097744	-1.95701479	-0.60729691
Н	7.04193083	-2.92371786	-1.57587739
С	2.87092676	-5.37202746	-0.86486330

Н	3.14811670	-5.23185681	-1.91307647
Н	2.91156561	-6.43971754	-0.63006998
Н	1.84574280	-5.01966593	-0.73547688
С	1.09895805	-1.76755272	3.79335696
Н	1.41016607	-0.79454551	3.41632232
Н	0.16064570	-1.64896811	4.34078190
Н	1.87269776	-2.12931248	4.47700846
С	3.60293056	4.85306059	1.03014378
Н	3.94649197	5.06767473	2.04661859
Н	3.73538255	5.75268429	0.42172152
Н	2.54050104	4.60698814	1.06763616
С	5.27435433	-4.97083054	-0.12575363
Н	5.91092802	-4.35489196	0.51390408
Н	5.42862154	-6.01970157	0.14283667
Н	5.58837877	-4.83197445	-1.16374232
С	3.88327525	1.22290555	5.36439275
Н	4.85596833	0.82888299	5.06187323
Н	4.03564245	1.90036019	6.20936171
Н	3.26089704	0.38776221	5.69598591
С	1.85779949	2.54946116	4.58098632
Н	1.18082952	1.76423418	4.92795798
Н	1.96888214	3.29194703	5.37657272
Н	1.40642407	3.02941114	3.71147031

Table S2 Bond lengths(Å) for complex 1.

Bond	Distance(Å)	Bond	Distance(Å)	Bond	Distance(Å)
Ti1 - Ti2	3.2194(14)	S1 - O6	1.460(4)	C2 - C6	1.366(7)
Ti1 - O2	2.003(3)	S1 - O8	1.437(4)	C3 - C7	1.395(8)
Ti1 - O3 ¹	2.068(3)	S1 - C2	1.753(5)	C4 - C41	1.484(10)
Ti1 - O4	2.218(4)	O1 - C1	1.248(6)	C5 - C7	1.330(9)
Ti1 - O5	1.997(4)	O2 - C4	1.402(5)	C5 - C8	1.367(9)
Ti1 - O7	1.777(4)	O3 - C1	1.260(6)	C6 - C8	1.384(8)
Ti1 - O10	1.758(4)	O5 - C9	1.438(7)	C9 - C10	1.420(11)
Ti2 - O1	2.068(3)	O7 - C11	1.415(8)	C9 - C23	1.426(8)
Ti2 - O2	2.022(3)	O9 - C13	1.349(10)	C11 - C14	1.450(13)
Ti2 - O5	2.020(4)	O10 - C17	1.340(12)	C11 - C20	1.396(14)
Ti2 - O6	2.187(4)	O11 - C12	1.441(11)	C12 - C15	1.387(15)
Ti2 - O9	1.763(4)	N1 - C3	1.358(7)	C12 - C19	1.443(14)
Ti2 - O11	1.767(4)	C1 - C4	1.559(7)	C13 - C16	1.366(15)
S1 - O4	1.468(4)	C2 - C3	1.396(7)	C13 - C18	1.451(16)

Bond	Angles ()	Bond	Angles ()	Bond	Angles ()
O2-Ti1-Ti2	37.08(9)	O9-Ti2-Ti1	143.42(15)	O1-C1-O3	123.9(4)
O2-Ti1-O3 ¹	83.24(13)	O9-Ti2-O1	98.43(18)	O1-C1-C4	113.6(4)
O2-Ti1-O4	80.95(14)	O9-Ti2-O2	168.44(18)	O3-C1-C4	122.4(4)
O3 ¹ -Ti1-Ti2	119.54(10)	O9-Ti2-O5	109.24(18)	C3-C2-S1	120.2(4)
O3 ¹ -Ti1-O4	83.80(13)	O9-Ti2-O6	84.32(17)	C6-C2-S1	119.2(4)
O4-Ti1-Ti2	79.06(10)	O9-Ti2-O11	97.7(2)	C6-C2-C3	120.6(5)
O5-Ti1-Ti2	36.98(10)	O11-Ti2-Ti1	99.77(16)	N1-C3-C2	122.8(5)
O5-Ti1-O2	73.88(13)	O11-Ti2-O1	93.81(17)	N1-C3-C7	120.4(5)
O5-Ti1-O3 ¹	156.15(15)	O11-Ti2-O2	93.13(18)	C7-C3-C2	116.7(5)
O5-Ti1-O4	85.98(14)	O11-Ti2-O5	98.20(19)	O2-C4-C1	109.5(4)
O7-Ti1-Ti2	102.47(15)	O11-Ti2-O6	177.28(18)	O2-C4-C4 ¹	110.7(5)
O7-Ti1-O2	96.94(18)	O4-S1-C2	105.3(2)	$C4^1$ -C4-C1	109.5(5)
07-Ti1-O3 ¹	90.73(16)	O6-S1-O4	110.8(2)	C7-C5-C8	121.3(6)
O7-Ti1-O4	174.32(17)	O6-S1-C2	107.4(2)	C2-C6-C8	120.7(6)
07-Ti1-O5	98.53(17)	O8-S1-O4	114.3(2)	C5-C7-C3	122.2(6)
O10-Ti1-Ti2	137.54(14)	O8-S1-O6	111.1(3)	C5-C8-C6	118.5(6)
O10-Ti1-O2	164.48(19)	O8-S1-C2	107.4(2)	C10-C9-O5	113.6(6)
O10-Ti1-O3 ¹	96.40(18)	C1-O1-Ti2	120.9(3)	C10-C9-C23	133.5(8)
O10-Ti1-O4	83.59(19)	Ti1-O2-Ti2	106.25(13)	C23-C9-O5	112.4(7)
O10-Ti1-O5	103.81(18)	C4-O2-Ti1	135.4(3)	O7-C11-C14	111.0(8)
O10-Ti1-O7	98.6(2)	C4-O2-Ti2	118.0(3)	C20-C11-O7	111.7(9)
O1-Ti2-Ti1	112.11(10)	C1-O3-Ti1 ¹	130.8(3)	C20-C11-C14	117.3(10)
01-Ti2-O6	84.08(14)	S1-O4-Ti1	133.1(2)	O11-C12-C19	113.5(10)
O2-Ti2-Ti1	36.67(9)	Ti1-O5-Ti2	106.55(15)	C15-C12-O11	114.2(11)
O2-Ti2-O1	76.73(13)	C9-O5-Ti1	128.0(5)	C15-C12-C19	118.8(13)
O2-Ti2-O6	84.73(13)	C9-O5-Ti2	125.4(5)	O9-C13-C16	121.0(11)
O5-Ti2-Ti1	36.48(10)	S1-O6-Ti2	132.2(2)	O9-C13-C18	115.7(11)
O5-Ti2-O1	147.88(14)	C11-O7-Ti1	140.5(5)	C16-C13-C18	119.9(12)
O5-Ti2-O2	72.97(13)	C13-O9-Ti2	159.1(7)	O10-C17-C21	120.0(12)
O5-Ti2-O6	82.79(15)	C17-O10-Ti1	164.5(7)	O10-C17-C22	114.5(11)
O6-Ti2-Ti1	79.50(9)	C12-O11-Ti2	142.2(6)	C21-C17-C22	124.5(13)

Table S3 Bond angles ($^{\circ}$) for complex 1.

Table S4 Bond lengths(Å) for complex 2.

Bond	Distance(Å)	Bond	Distance(Å)	Bond	Distance(Å)
Ti1 - Ti2	3.2323(13)	O2 - C1	1.250(5)	C2 - C5	1.398(7)
Ti1 - O1	2.008(3)	O3 - C1	1.251(6)	C3 - C6	1.384(7)
Ti1 - O3	2.073(3)	O4 - C9	1.459(6)	C4 - C41	1.520(9)
Ti1 - O4	2.005(3)	O7 - C14	1.432(8)	C5 - N1	1.361(6)
Ti1 - O5	2.223(3)	O8 - C11	1.436(6)	C5 - C7	1.404(8)
Ti1 - O8	1.772(3)	O9 - C10	1.400(7)	C6 - C8	1.371(8)

Ti1 - 09	1.763(4)	O10 - C16	1.362(7)	C6 - C18	1.507(8)
Ti2 - O1	2.031(3)	C1 - C4	1.562(6)	C7 - C8	1.355(8)
Ti2 - O21	2.063(3)	C2 - C3	1.371(6)	C9 - C12	1.476(8)
Ti2 - O4	1.996(3)	C2 - C5	1.398(7)	C9 - C17	1.463(8)
Ti2 - O6	2.177(3)	C3 - C6	1.384(7)	C10- C13	1.492(8)
Ti2 - O7	1.742(4)	C4 - C41	1.520(9)	C10 - C21	1.483(8)
Ti2 - O10	1.785(3)	C5 - N1	1.361(6)	C11 - C23	1.483(8)
S1 - O5	1.468(3)	C5 - C7	1.404(8)	C11 - C24	1.478(9)
S1 - O6	1.465(3)	O9 - C10	1.400(7)	C14 - C15	1.504(8)
S1 - O11	1.432(3)	O10 - C16	1.362(7)	C14-C20	1.427(9)
S1 - C2	1.753(5)	C1 - C4	1.562(6)	C16-C19	1.474(9)
O1 - C4	1.404(5)	C2 - C3	1.371(6)	C16-C22	1.468(10)

 Table S5 Bond angles (°) for complex 2.

Bond	Angles ()	Bond	Angles ()	Bond	Angles ()
O1-Ti1-Ti2	37.09(8)	07-Ti2-O1	98.06(15)	O3-C1-C4	114.1(4)
O1-Ti1-O3	76.78(13)	$O7-Ti2-O2^1$	89.12(15)	C3-C2-S1	118.6(4)
01-Ti1-O5	85.80(12)	07-Ti2-O4	97.89(15)	C3-C2-C5	120.8(5)
O3-Ti1-Ti2	111.58(10)	07-Ti2-O6	173.42(15)	C5-C2-S1	120.6(4)
O3-Ti1-O5	81.63(12)	O7-Ti2-O10	98.07(17)	C2-C3-C6	122.6(6)
O4-Ti1-Ti2	36.01(9)	O10-Ti2-Ti1	134.68(13)	O1-C4-C1	108.8(4)
O4-Ti1-O1	72.67(12)	O10-Ti2-O1	163.59(15)	O1-C4-C4 ¹	110.6(5)
O4-Ti1-O3	146.74(14)	O10-Ti2-O2 ¹	99.76(15)	C4 ¹ -C4-C1	109.0(5)
O4-Ti1-O5	83.31(13)	O10-Ti2-O4	102.41(15)	C2-C5-C7	115.9(6)
O5-Ti1-Ti2	78.95(8)	O10-Ti2-O6	83.22(15)	N1-C5-C2	123.0(5)
O8-Ti1-Ti2	103.64(11)	O5-S1-C2	107.1(2)	N1-C5-C7	121.0(6)
08-Ti1-O1	93.74(14)	O6-S1-O5	110.77(19)	C3-C6-C18	121.1(7)
O8-Ti1-O3	93.44(14)	O6-S1-C2	105.1(2)	C8-C6-C3	116.2(6)
08-Ti1-O4	101.30(14)	011-S1-O5	112.3(2)	C8-C6-C18	122.6(6)
08-Ti1-O5	175.02(14)	O11-S1-O6	113.1(2)	C8-C7-C5	121.7(6)
O9-Ti1-Ti2	140.95(11)	O1-S1-C2	107.9(2)	C7-C8-C6	122.7(6)
O9-Ti1-O1	168.46(15)	Ti1-O1-Ti2	106.32(14)	O4-C9-C12	111.3(5)
O9-Ti1-O3	99.41(15)	C4-O1-Ti1	118.7(3)	O4-C9-C17	111.5(5)
O9-Ti1-O4	107.92(15)	C4-O1-Ti2	134.1(3)	C17-C9-C12	118.0(6)
O9-Ti1-O5	82.85(14)	C1-O2-Ti2 ¹	131.8(3)	O9-C10-C13	109.8(5)
O9-Ti1-O8	97.38(16)	C1-O3-Ti1	120.1(3)	O9-C10-C21	109.2(6)
O1-Ti2-Ti1	36.59(9)	Ti2-O4-Ti1	107.78(15)	C21-C10-C13	113.2(6)
O1-Ti2-O2 ¹	83.46(12)	C9-O4-Ti1	128.6(3)	O8-C11-C23	109.9(5)
O1-Ti2-O6	81.09(12)	C9-O4-Ti2	123.0(3)	O8-C11-C24	109.3(5)
O2 ¹ -Ti2-Ti1	119.32(9)	S1-O5-Ti1	131.8(2)	C24-C11-C23	113.0(7)
O2 ¹ -Ti2-O6	84.30(13)	S1-O6-Ti2	135.62(19)	O7-C14-C15	109.2(7)
O4-Ti2-Ti1	36.20(9)	C14-O7-Ti2	147.5(4)	C20-C14-O7	113.9(6)
O4-Ti2-O1	72.36(12)	C11-O8-Ti1	141.5(4)	C20-C14-C15	115.8(7)

O4-Ti2-O2 ¹	155.51(13)	C10-O9-Ti1	157.9(4)	O10-C16-C19	112.5(6)
O4-Ti2-O6	88.10(13)	C16-O10-Ti2	143.4(4)	O10-C16-C22	113.1(7)
O6-Ti2-Ti1	79.10(8)	O2-C1-O3	124.5(4)	C22-C16-C19	112.4(6)
O7-Ti2-Ti1	104.14(12)	O2-C1-C4	121.4(5)		

(a) (b) Figure S1 Photos of the crystals 1 (a) and 2 (b).

Figure S2 Comparison of Experimental and Computed (DFT/B3LYP method with 6-311G* and lanl2dz basis set) FT-IR spectra of **1** and **2**.

Figure S3 TGA curves of 1 and 2. All the two samples were treated by vacuum drying.

Figure S4 Mott-Schottky plots for 1 and 2 in 0.1 M Na_2SO_4 aqueous solution.

Figure S5 Full range J-V curves of 1 and 2 in light-off (black) and light-on (red) conditions.

Figure S6 XRD patterns of 1 and 2 under solvothermal treatment at room temperature for 24 h in different organic solvents.

(a)

(b)

Figure S7 (a) The hydrogen bonds between adjacent TOCs of **1**; (b) The 3D supramolecular network of **1**. The most hydrogen atoms are omitted for clarity.

(a)

Figure S8 (a) The hydrogen bonds between adjacent TOCs of 2; (b)The 3D supramolecular network of 2 viewing along a-axis. The most hydrogen atoms are omitted for clarity.