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 Scheme S1. Catalytic cycle and proposed mechanism for hydroboration of benzaldehyde using two 
molecules of 1 as catalysts. The DFT B3LYP/def2svp and CAM-B3LYP/def2svp (SMD, solvent – benzene) 
calculated relative enthalpies (ΔH298, kcal/mol) of the intermediates and TS are shown in blue and green, 
respectively.
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Table S1. Total energies without (Etotal), with (Etotal
ZPE) taking into account for the energies of zero-point 

harmonic vibrations and total enthalpies (Htotal
298), all values are given in a.u.; relative energies without (ΔE), 

with (ΔEZPE) taking into account for the energies of zero-point harmonic vibrations and relative enthalpies 

(ΔH298), all values are given in kcal/mol, of reactants, intermediates and transition states for cyanosilylation of 

benzaldehyde with 1 as catalyst calculated by the DFT B3LYP/def2svp method with inclusion of nonspecific 

solvation (SMD, solvent – benzene). The DFT CAM-B3LYP/def2svp (SMD, solvent – benzene) data are 

shown in brackets. 

Structure Etotal ΔE Etotal
ZPE ΔEZPE Htotal

298 ΔH298

1
-2906.037040

(-2905.659206)

-2905.659724

(-2905.277274)

-2905.640698

(-2905.258513)

TMSCN
-501.895293

(-501.752940)

-501.776491

(-501.632991)

-501.766081

(-501.622669)

PhCHO
-345.334643

(-345.148149)

-345.224558

(-345.036780)

-345.217366

(-345.029637)

PhCH(CN)OSiMe3
-847.254612

(-846.934685)

-847.022382

(-846.699862)

-847.005016

(-846.682670)

1+TMSCN+PhCHO
-3753.266977

(-3752.560295)

0.0

(0.0)

-3752.660773

(-3751.947045)

0.0

(0.0)

-3752.624145

(-3751.910819)

0.0

(0.0)

int1
-3407.936990

(-3407.419266)

-3407.440458

(-3406.916932)

-3407.409639

(-3406.886523)

int1+PhCHO
-3753.271633

(-3752.567415)

-2.9

(-4.5)

-3752.665016

(-3751.953712)

-2.7

(-4.2)

-3752.627005

(-3751.916160)

-1.8

(-3.4)

int2
-3753.278444

(-3752.577135)

-7.2 

(-10.6)

-3752.670697

(-3751.962214)

-6.2

(-9.5)

-3752.631502

(-3751.923571)

-4.6

(-8.0)

TS2–3
-3753.227816

(-3752.530357)

24.6

(18.8)

-3752.619827

(-3751.914952)

25.7

(20.1)

-3752.582289

(-3751.878099)

26.3

(20.5)

int3
-3753.296855

(-3752.601766)

-18.7

(-26.0)

-3752.686765

(-3751.984465)

-16.3

(-23.5)

-3752.649011

(-3751.947172)

-15.6

(-22.8)

1+PhCH(CN)OSiMe3
-3753.291652

(-3752.593891)

-15.5

(-21.1)

-3752.682106

(-3751.977136)

-13.4

(-18.9)

-3752.645714

(-3751.941183)

-13.5

(-19.1)



Figure S1. Optimized geometries of reaction intermediates and transition state for 
cyanosilylation of benzaldehyde with 1 as catalyst calculated by the DFT 
B3LYP/def2svp (SMD, solvent – benzene) method. Hereinafter bond lengths are given in Å, 
the DFT CAM-B3LYP/def2svp (SMD, solvent – benzene) data are shown in brackets.



Figure S2. Energy profile of cyanosilylation of benzaldehyde catalyzed by 1, in accordance with path 
found by the DFT B3LYP/def2svp (SMD, solvent – benzene) method. 



Table S2. Total energies without (Etotal), with (Etotal
ZPE) taking into account for the energies of zero-point 

harmonic vibrations and total enthalpies (Htotal
298), all values are given in a.u.; relative energies without (ΔE), 

with (ΔEZPE) taking into account for the energies of zero-point harmonic vibrations and relative enthalpies 
(ΔH298), all values are given in kcal/mol, of reactants, transition states and products for cyanosilylation and 
hydroboration of benzaldehyde calculated by the DFT B3LYP/def2svp method with inclusion of nonspecific 
solvation (SMD, solvent – benzene). The DFT CAM-B3LYP/def2svp (SMD, solvent – benzene) data are 
shown in brackets.

Structure Etotal ΔE Etotal
ZPE ΔEZPE Htotal

298 ΔH298

Cyanosilylation of benzaldehyde

TMSCN
-501.895293

(-501.752940)

-501.776491

(-501.632991)

-501.766081

(-501.622669)

PhCHO
-345.334643

(-345.148149)

-345.224558

(-345.036780)

-345.217366

(-345.029637)

(TMSCN+PhCHO)
-847.235781

(-846.908995)

-3.7

(-5.0)

-847.006082

(-846.676687)

-3.2 

(-4.3)

-846.987174

(-846.658061)

-2.3

(-3.6)

TScyanosilylation
-847.171811

(-846.846317)

36.5

(34.4)

-846.942114

(-846.614188)

37.0

(34.9)

-846.924244 

(-846.596441)

37.2

(35.1)

PhCH(CN)OSiMe3
-847.254612

(-846.934685)

-15.5

(-21.1)

-847.022382

(-846.699862)

-13.4

(-18.9)

-847.005016

(-846.682670)

-13.5

(-19.1)

Hydroboration of benzaldehyde

HBpin
-411.575518

(-411.365462)

-411.386133

(-411.174067)

-411.375683

(-411.163733)

PhCHO
-345.334643

(-345.148149)

-345.224558

(-345.036780)

-345.217366

(-345.029637)

(HBpin+PhCHO)
-756.913088

(-756.519813)

-1.8

(-3.9)

-756.612828

(-756.216074)

-1.3

(-3.3)

-756.593830

(-756.197330)

-0.5

(-2.5)

TShydroboration
-756.861894

(-756.469329)

30.3

(27.8)

-756.562821

(-756.166856)

30.0

(27.6)

-756.545563

(-756.149714)

29.8

(27.4)

PhCH2OBpin
-756.973881

(-756.586327)

-40.0

(-45.6)

-756.669073

(-756.277878)

-36.6

(-42.1)

-756.652415

(-756.260596)

-37.3

(-42.2)



Figure S3. DFT B3LYP/def2svp (SMD, solvent – benzene) computational results on cyanosilylation 
and hydroboration of benzaldehyde. 



Table S3. Total energies without (Etotal), with (Etotal
ZPE) taking into account for the energies of zero-point 

harmonic vibrations and total enthalpies (Htotal
298), all values are given in a.u.; relative energies without (ΔE), 

with (ΔEZPE) taking into account for the energies of zero-point harmonic vibrations and relative enthalpies 
(ΔH298), all values are given in kcal/mol, of reactants, intermediates and transition states for hydroboration of 
benzaldehyde with 1 as catalyst, calculated by the DFT B3LYP/def2svp method with inclusion of nonspecific 
solvation (SMD, solvent – benzene). The DFT CAM-B3LYP/def2svp (SMD, solvent – benzene) data are 
shown in brackets.

Structure Etotal ΔE Etotal
ZPE ΔEZPE Htotal

298 ΔH298

1 -2906.037040
(-2905.659206)

-2905.659724
(-2905.277274)

-2905.640698
(-2905.258513)

HBpin
-411.575518

(-411.365462)
-411.386133

(-411.174067)
-411.375683

(-411.163733)

PhCHO
-345.334643

(-345.148149)
-345.224558

(-345.036780)
-345.217366

(-345.029637)

PhCH2OBpin
-756.973881

(-756.586327)
-756.669073

(-756.277878)
-756.652415

(-756.260596)
Path 1

1+ HBpin +PhCHO
-3662.947202

(-3662.172818)
0.0

(0.0)
-3662.270415

(-3661.488121)
0.0

(0.0)
-3662.233747

(-3661.451883)
0.0

(0.0)

int4 -3317.615541
(-3317.030072)

-3317.048189
(-3316.456423)

-3317.017299
(-3316.425939)

int4+PhCHO
-3662.950184

(-3662.178221)
-1.9 

(-3.4)
-3662.272747

(-3661.493203)
-1.5

(-3.2)
-3662.234665

(-3661.455576)
-0.6

(-2.3)

int5 -3662.953462
(-3662.183385)

-3.9
(-6.6)

-3662.275612
(-3661.497204)

-3.3
(-5.7)

-3662.237101
(-3661.458469)

-2.1
(-4.1)

TS5–6
-3662.902698

(--3662.136438)
27.9

(22.8)
-3662.226063

(-3661.451349)
27.8

(23.1)
-3662.188351

(-3661.414255)
28.5

(23.6)

int6 -3663.012506
(-3662.252742)

-41.0
(-50.2)

-3662.330072
(-3661.561984)

-37.4
(-46.3)

-3662.291853
(-3661.524514)

-36.5
(-45.6)

1+ PhCH2OBpin
-3663.010922

(-3662.245525)
-40.0

(-45.6)
-3662.328797

(-3661.555272)
-36.6

(-42.1)
-3662.293113

(-3661.519109)
-37.3

(-42.2)
Path 2

1+1+HBpin+PhCHO
-6568.984243

(-6567.832024)
0.0

(0.0)
-6567.930139

(-6566.765395)
0.0

(0.0)
-6567.874445

(-6566.710396)
0.0

(0.0)

int7 -6223.655414
(-6222.694252)

-6222.709985
(-6221.738137)

-6222.658719
(-6221.687357)

int7+PhCHO
-6568.990057

(-6567.842402)
-3.6

(-6.5)
-6567.934543

(-6566.774917)
-2.8

(-6.0)
-6567.876085

(-6566.716994)
-1.0

(-4.1)

int8 -6568.993149
(-6567.848999)

-5.6
(-10.7)

-6567.937329
(-6566.780557)

-4.5
(-9.5)

-6567.877314
(-6566.721475)

-1.8
(-7.0)

TS8–9
-6568.942902

(-6567.802359)
25.9

(18.6)
-6567.887510

(-6566.734313)
26.8

(19.5)
-6567.829617

(-6566.677303)
28.1

(20.8)

int9 -6569.052726
(-6567.915497)

-43.0
(-52.4)

-6567.992081
(-6566.842214)

-38.9
(-48.2)

-6567.933421
(-6566.784533)

-37.0
(-46.5)

1+1+PhCH2OBpin
-6569.047962

(-6567.904731)
-40.0

(-45.6)
-6567.988521

(-6566.832546)
-36.6

(-42.1)
-6567.933811

(-6566.777622)
-37.3

(-42.2)
Path 3



1+ HBpin+PhCHO
-3662.947202

(-3662.172818)
0.0

(0.0)
-3662.270415

(-3661.488121)
0.0

(0.0)
-3662.233747

(-3661.451883)
0.0

(0.0)

int10 -3251.376556
(-3250.817220)

-3250.888390
(-3250.323213)

-3250.860891
(-3250.296131)

int10+HBpin 
-3662.952074

(-3662.182682)
-3.1

(-6.2)
-3662.274523

(-3661.497280)
-2.6

(-5.7)
-3662.236574

(-3661.459864)
-1.8

(-5.0)

int11 -3662.954200
(-3662.184986)

-4.4
(-7.6)

-3662.276269
(-3661.498777)

-3.7
(-6.7)

-3662.237679
(-3661.459950)

-2.5
(-5.1)

TS11–12
-3662.904431

(-3662.138437)
26.8

(21.6)
-3662.227335

(-3661.453417)
27.0

(21.8)
-3662.189742

(-3661.416240)
27.6

(22.4)

int12 -3663.012044
(-3662.252971)

-40.7
(-50.3)

-3662.328940
(-3661.561826)

-36.7
(-46.3)

-3662.291086
(-3661.524464)

-36.0
(-45.5)

1+PhCH2OBpin
-3663.010922

(-3662.245525)
-40.0

(-45.6)
-3662.328797

(-3661.555272)
-36.6

(-42.1)
-3662.293113

(-3661.519109)
-37.3

(-42.2)

Figure S4. Optimized geometries of reaction intermediates and transition state for hydroboration of 
benzaldehyde with 1 as catalyst calculated by the DFT B3LYP/def2svp (SMD, solvent – benzene) 
method. 



Figure S5. Energy profile of hydroboration of benzaldehyde catalyzed by 1, in accordance with path 1 
found by the DFT B3LYP/def2svp (SMD, solvent – benzene) method. 



Figure S6. Optimized geometries of reaction intermediates and transition state for hydroboration of 
benzaldehyde with 1 as catalyst calculated by the DFT B3LYP/def2svp (SMD, solvent – benzene) 
method. 



Figure S7. Energy profile of hydroboration of benzaldehyde catalyzed by 1, in accordance with path 2 
found by the DFT B3LYP/def2svp (SMD, solvent – benzene) method. 



Figure S8. Optimized geometries of reaction intermediates and transition state for hydroboration of 
benzaldehyde with 1 as catalyst calculated by the DFT B3LYP/def2svp (SMD, solvent – benzene) 
method. 



Figure S9. Energy profile of hydroboration of benzaldehyde catalyzed by 1, in accordance with path 3 
found by the DFT B3LYP/def2svp (SMD, solvent – benzene) method. 

Table S4. Total energies without (Etotal), with (Etotal
ZPE) taking into account for the energies of zero-point 

harmonic vibrations and total enthalpies (Htotal
298), all values are given in a.u.; relative energies without (ΔE), 

with (ΔEZPE) taking into account for the energies of zero-point harmonic vibrations and relative enthalpies 
(ΔH298), all values are given in kcal/mol, of reactant, transition state and product for oxidative addition of 
HBpin to 1 calculated by the DFT B3LYP/def2svp method with inclusion of nonspecific solvation (SMD, 
solvent – benzene). The DFT CAM-B3LYP/def2svp (SMD, solvent – benzene) data are shown in brackets.

Structure Etotal ΔE Etotal
ZPE ΔEZPE Htotal

298 ΔH298

1+ HBpin
-3317.612559

(-3317.024668)

0.0

(0.0)

-3317.045857

(-3316.451341)

0.0

(0.0)

-3317.016381

(-3316.422246)

0.0

(0.0)

int13
-3317.614419

(-3317.027876)

-1.2

(-2.0)

-3317.047125

(-3316.453982)

-0.8

(-1.7)

-3317.016189

(-3316.424339)

0.0

(-1.3)

TS13–14
-3317.539644

(-3316.957748)

45.8

(42.0)

-3316.976370

(-3316.387494)

43.6

(40.1)

-3316.946473

(-3316.358043)

43.9

(40.3)

int14
-3317.594082

(-3317.014944)

11.6

(6.1)

-3317.027850

(-3316.442096)

11.3

(5.8)

-3316.997666

(-3316.412221)

11.7

(6.3)



Figure S10. Optimized geometries of reaction intermediates and transition state for oxidative addition 
of HBpin to 1 calculated by the DFT B3LYP/def2svp (SMD, solvent – benzene) method. 



Figure S11. 1H NMR spectra of   AdAPGe (1) in benzene-d6. (*) indicates signals of Hexane.

Figure S12. 13C NMR spectra of   AdAPGe (1) in benzene-d6.



Figure S13. 1H NMR spectra for Hydroboration of C6H5CHO with HBpin in absence of catalyst in 
benzene-d6.

Figure S14. 1H NMR spectra for Cyanosilylation of C6H5CHO with HBpin in absence of catalyst in 
benzene-d6.



Figure S15. 1H NMR spectra for Hydroboration of C6H5CHO with HBpin in benzene-d6 using catalyst 
(3) loading of 1 mol% for 1 hrs at room temperature.

Figure S16. 1H NMR spectra for Hydroboration of C6H5CHO with HBpin in benzene-d6 using catalyst 
(3) loading of 1 mol% for 3 hrs at room temperature.



Figure S17. 1H NMR spectra for Hydroboration of C6H5CHO with HBpin in benzene-d6 using catalyst 
(2) loading of 1 mol% for 1 hrs at room temperature.

Figure S18. 1H NMR spectra for Hydroboration of C6H5CHO with HBpin in benzene-d6 using catalyst 
(2) loading of 1 mol% for 3 hrs at room temperature.



Figure S19. 1H NMR spectra for Hydroboration of C6H5CHO with HBpin in benzene-d6 using catalyst 
(1) loading of 1 mol% for 1 hrs at room temperature.

Figure S20. 1H NMR spectra for Hydroboration of C6H5CHO with HBpin in benzene-d6 using catalyst 
(1) loading of 1 mol% for 3 hrs at room temperature.



Figure S21. 1H NMR spectra for Hydroboration of C6H5CHO with HBpin in benzene-d6 using catalyst 
(1) loading of 0.5 mol% for 1 hrs at room temperature.

Figure S22. 1H NMR spectra for Hydroboration of C6H5CHO with HBpin in benzene-d6 using catalyst 
(1) loading of 0.5 mol% for 3 hrs at room temperature.



Figure S23. 1H NMR spectra for Cyanosilylation of C6H5CHO with TMSCN in benzene-d6 using 
catalyst (1) loading of 1 mol% for 1 hrs at room temperature.

Figure S24. 1H NMR spectra for Cyanosilylation of C6H5CHO with TMSCN in benzene-d6 using 
catalyst (1) loading of 1 mol% for 3 hrs at room temperature.



Figure S25. 1H NMR spectra for Cyanosilylation of C6H5CHO with TMSCN in benzene-d6 using 
catalyst (1) loading of 0.25 mol% for 1 hrs at room temperature.

Figure S26. 1H NMR spectra for Cyanosilylation of C6H5CHO with TMSCN in benzene-d6 using 
catalyst (1) loading of 0.25 mol% for 3 hrs at room temperature.



Figure S27. 1H NMR spectra for Hydroboration of 4-Nitrobenzaldehyde with HBPin in benzene-d6 
using catalyst (1) loading of 1 mol% for 1 hrs at room temperature.

Figure S28. 1H NMR spectra for Hydroboration of 4-Nitrobenzaldehyde with HBPin in benzene-d6 
using catalyst (1) loading of 1 mol% for 3 hrs at room temperature.



Figure S29. 1H NMR spectra for Hydroboration of 3-Nitrobenzaldehyde with HBPin in benzene-d6 
using catalyst (1) loading of 1 mol% for 1 hrs at room temperature.

Figure S30. 1H NMR spectra for Hydroboration of 3-Nitrobenzaldehyde with HBPin in benzene-d6 
using catalyst (1) loading of 1 mol% for 3 hrs at room temperature.



Figure S31. 1H NMR spectra for Hydroboration of 2-Nitrobenzaldehyde with HBPin in benzene-d6 
using catalyst (1) loading of 1 mol% for 1 hrs at room temperature.

Figure S32. 1H NMR spectra for Hydroboration of 2-Nitrobenzaldehyde with HBPin in benzene-d6 
using catalyst (1) loading of 1 mol% for 3 hrs at room temperature.



Figure S33. 1H NMR spectra for Hydroboration of 3,4-Dichlorobenzaldehyde with HBPin in benzene-
d6 using catalyst (1) loading of 1 mol% for 1 hrs at room temperature.

Figure S34. 1H NMR spectra for Hydroboration of 3,4-Dichlorobenzaldehyde with HBPin in benzene-
d6 using catalyst (1) loading of 1 mol% for 3 hrs at room temperature.



Figure S35. 1H NMR spectra for Hydroboration of 4-Methylbenzaldehyde with HBPin in benzene-d6 
using catalyst (1) loading of 1 mol% for 1 hrs at room temperature.

Figure S36. 1H NMR spectra for Hydroboration of 4-Methylbenzaldehyde with HBPin in benzene-d6 
using catalyst (1) loading of 1 mol% for 3 hrs at room temperature.



Figure S37. 1H NMR spectra for Hydroboration of 4-Methoxybenzaldehyde with HBPin in benzene-d6 
using catalyst (1) loading of 1 mol% for 1 hrs at room temperature. 

Figure S38. 1H NMR spectra for Hydroboration of 4-Methoxybenzaldehyde with HBPin in benzene-d6 
using catalyst (1) loading of 1 mol% for 3 hrs at room temperature.



Figure S39. 1H NMR spectra for Hydroboration of 4-(dimethylamino)benzaldehyde with HBPin in 
benzene-d6 using catalyst (1) loading of 1 mol% for 1 hrs at room temperature. 

Figure S40. 1H NMR spectra for Hydroboration of 4-(dimethylamino)benzaldehyde with HBPin in 
benzene-d6 using catalyst (1) loading of 1 mol% for 3 hrs at room temperature. 



Figure S41. 1H NMR spectra for Hydroboration of PhCHO with HBPin in benzene-d6 using catalyst 
(1) loading of 1 mol% for 1-3 hrs at room temperature. 

NMR spectra of pure products. 

 4,4,5,5-tetramethyl-2-(benzyloxy)-1,3,2-dioxaborolane 

1H NMR (300 MHz, C6D6) δ (ppm) = 1.04 (s, 12H), 4.94 (s, 2H), 7.15-7.19 (m, 1H), 7.26-7.35 (m, 4H). 

13C NMR (300 MHz, C6D6) δ (ppm) = 24.5, 66.6, 82.9, 126.6, 127.3, 128.2, 139.1.

 11B NMR (400 MHz, C6D6) δ (ppm) = 22.5.

2-phenyl-2-((trimethylsilyl)oxy)propanenitrile 

1H NMR (300 MHz, C6D6)  δ (ppm) = 0.03 (s, 9H), 5.11 (s, 1H), 7.33-7.42 (m, 3H), 7.54-7.55 (m, 2H).

13C NMR (300 MHz, C6D6) δ (ppm) = 1.0, 33.6, 71.6, 121.6, 124.6, 128.6, 142.0.

29Si NMR (400 MHz, C6D6) δ (ppm) = 24.3.



4,4,5,5-tetramethyl-2-((4-methoxybenzyl)oxy)-1,3,2-dioxaborolane (a)

1H NMR (300 MHz, C6D6) δ (ppm) = 1.06 (s, 12H), 3.21 (s, 3H), 4.87 (s, 2H), 6.53 (d, 2H), 7.51 (d, 2H). 

13C NMR (300 MHz, C6D6) δ (ppm) = 24.6, 55.4, 66.6, 83.0, 113.8, 113.9, 128.6, 129.5, 131.6, 159.1. 

11B NMR (400 MHz C6D6) δ (ppm) = 22.3.

2-((2,4-dichlorobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (b).

 1H NMR (300 MHz, C6D6): δ (ppm) = 1.03 (s, 12H), 4.61 (s, 2H), 6.99 (d, 1H), 6.75 (d, 1H), 7.21 (dd, 1H). 

13C-{1H} NMR (300 MHz, C6D6): δ (ppm) = 24.5, 63.5, 83.0, 127.0, 128.6, 128.8, 131.9, 133.4, 135.4,.

 11B{1H} NMR (400 MHz, C6D6): δ (ppm) = B 22.3

4,4,5,5-tetramethyl-2-((4-methylbenzyl)oxy)-1,3,2-dioxaborolane (c)

1H NMR (300 MHz, C6D6) δ (ppm) = 1.02 (s, 12H), 1.96 (s, 3H), 4.91 (s, 2H), 7.20 (d, 2H), 7.48-7.5 (m, 
2H). 

13C NMR (300 MHz, C6D6) δ (ppm) = 21.3, 24.7, 66.7, 83.0, 127.0, 127.2, 129.1, 129.3, 136.4, 137.1. 

11B NMR (400 MHz, C6D6) δ (ppm) = 22.5.

N,N-dimethyl-4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2- yl)oxy)methyl)aniline (d)

1H NMR (300 MHz, C6D6) δ (ppm) = 1.07 (s, 12H), 2.20 (s, 6H), 4.98 (s, 2H), 6.30 (d, 2H), 7.86 (d, 2H). 

13C NMR (300 MHz, C6D6) δ (ppm) = 24.7, 40.3, 61.6, 83.2, 112.1, 127.2, 129.1, 149.7. 

11B NMR (400 MHz, C6D6) δ (ppm) = 22.3.

4,4,5,5-tetramethyl-2-((4-nitrobenzyl)oxy)-1,3,2-dioxaborolane (e)

1H NMR (300 MHz, C6D6) δ (ppm) = 1.05 (s, 12H), 4.70 (s, 2H), 6.98 (d, 2H), 7.81 (d, 2H). 

13C NMR (300 MHz, C6D6) δ (ppm) = 24.6, 65.5, 83.4, 123.5, 126.8, 146.5, 147.2. 

11B NMR (400 MHz, C6D6) δ (ppm) = 22.5.

2-((3-nitrobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (f)

1H NMR (300 MHz, C6D6): δ (ppm) = 1.05 (s, 12H), 4.67 (s, 2H), 6.7-7.81 (m, 1H), 7.25(m, 2H), 7.5(m, 
1H), 8.1 (m, 2H). 

13C NMR (300 MHz, C6D6): δ (ppm) = 24.4, 65.6, 83.3, 121.3, 122.0, 126.7, 129.6, 132.4, 141.2. 



11B NMR (400 MHz, C6D6): δ (ppm) = 22.4

2-((2-nitrobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (g)

1H NMR (300 MHz, C6D6): δ (ppm) =1.05 (s, 12H), 5.35 (s, 2H), 6.99 (m, 1H), 7.44 (m, 1H), 7.55 – 7.63 
(m, 2H).

13C NMR (300 MHz, C6D6): δ (ppm) = 24.5, 63.6, 83.1, 127.0, 128.6, 128.8, 132.4, 133.4, 135.4.

11B NMR (400 MHz, C6D6): δ (ppm) = 22.4

4,4,5,5-tetramethyl-2-(1-phenylethoxy)-1,3,2-dioxaborolane (h)

1H NMR (300 MHz, C6D6) δ (ppm) = 1.03 (s, 12H), 1.47-1.49 (m, 3H), 5.79 (s, 1H), 7.00-7.07 (m, 1H), 
7.10-7.17 (m, 2H), 7.31-7.34 (m, 2H).

 13C NMR (300 MHz, C6D6) δ (ppm) = 24.3, 25.4, 72.6, 82.2, 125.3, 127.0, 128.2, 145.0. 

11B NMR (300 MHz, C6D6) δ (ppm) = 22.6.

Figure S42. Spin density distribution calculated by the DFT B3LYP/def2tzvp method for paramagnetic 
germylene 1a.


