Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

O,N-HETEROCYCLIC GERMYLENES AS EFFICIENT CATALYSTS FOR HYDROBORATION AND CYANOSILYLATION OF BENZALDEHYDE.

Kseniya V. Arsenyeva^a, Kira I. Pashanova^a, Olesya Yu. Trofimova^a, Irina V. Ershova^a, Maxim G. Chegerev^b, Alyona A. Starikova^b, Anton V. Cherkasov^a, Mikhail A. Syroeshkin^c, Anna Ya. Kozmenkova^c, Alexandr V. Piskunov^{*a}

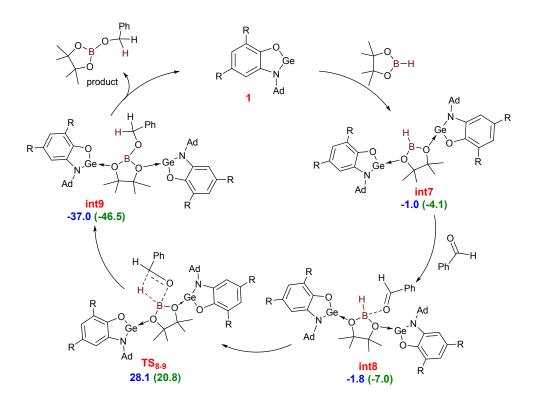
^a G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, 603950, 49 Tropinina str., Nizhny Novgorod, Russian Federation, Fax: +7 831 4627497.

^b Institute of Physical and Organic Chemistry at Southern Federal University, Stachka Avenue

194/2, 344090, Rostov-on-Don, Russian Federation

^cN. D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, 119991 Leninsky prosp. 47, Moscow, Russian Federation

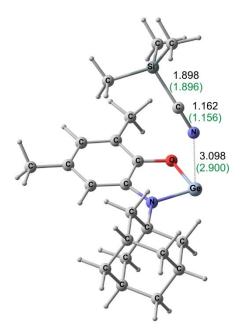
*Corresponding author e-mail: pial@iomc.ras.ru


Table of contents

Scheme S1. Catalytic cycle and proposed mechanism for hydroboration of benzaldehyde using two molecules of 1 as catalysts. The DFT B3LYP/def2svp and CAM-B3LYP/def2svp (SMD, solvent – benzene) calculated relative enthalpies (ΔH^{298} , kcal/mol) of the intermediates and TS are shown in blue and green, respectively
Table S16
Figure S1. Optimized geometries of reaction intermediates and transition state for cyanosilylation of benzaldehyde with 1 as catalyst calculated by the DFT B3LYP/def2svp (SMD, solvent – benzene) method7
Figure S2. Energy profile of cyanosilylation of benzaldehyde catalyzed by 1, in accordance with path found by the DFT B3LYP/def2svp (SMD, solvent – benzene) method
Table S29
Figure S3. DFT B3LYP/def2svp (SMD, solvent – benzene) computational results on cyanosilylation and hydroboration of benzaldehyde
Table S311
Figure S4. Optimized geometries of reaction intermediates and transition state for hydroboration of benzaldehyde with 1 as catalyst calculated by the DFT B3LYP/def2svp (SMD, solvent – benzene) method.
Figure S5. Energy profile of hydroboration of benzaldehyde catalyzed by 1, in accordance with path 1 found by the DFT B3LYP/def2svp (SMD, solvent – benzene) method
Figure S6. Optimized geometries of reaction intermediates and transition state for hydroboration of benzaldehyde with 1 as catalyst calculated by the DFT B3LYP/def2svp (SMD, solvent – benzene) method.
Figure S7. Energy profile of hydroboration of benzaldehyde catalyzed by 1, in accordance with path 2 found by the DFT B3LYP/def2svp (SMD, solvent – benzene) method
Figure S8. Optimized geometries of reaction intermediates and transition state for hydroboration of benzaldehyde with 1 as catalyst calculated by the DFT B3LYP/def2svp (SMD, solvent – benzene) method.
Figure S9. Energy profile of hydroboration of benzaldehyde catalyzed by 1, in accordance with path 3 found by the DFT B3LYP/def2svp (SMD, solvent – benzene) method
Table S417
Figure S10. Optimized geometries of reaction intermediates and transition state for oxidative addition of HBpin to 1 calculated by the DFT B3LYP/def2svp (SMD, solvent – benzene) method
Figire S11. ¹ H NMR spectra of ^{Ad} APGe (1) in benzene-d ₆ . (*) indicates signals of Hexane19
Figure S12. ¹³ C NMR spectra of ^{Ad} APGe (1) in benzene-d ₆ 19
Figure S13. ¹ H NMR spectra for Hydroboration of C_6H_5CHO with HBpin in absence of catalyst in benzene- d ₆
Figure S14. ¹ H NMR spectra for Cyanosilylation of C ₆ H ₅ CHO with HBpin in absence of catalyst in benzene- d ₆
Figure S15. ¹ H NMR spectra for Hydroboration of C_6H_5CHO with HBpin in benzene-d ₆ using catalyst (3) loading of 1 mol% for 1 hrs at room temperature21

Figure S16. ¹ H NMR spectra for Hydroboration of C_6H_5CHO with HBpin in benzene-d ₆ using catalyst (3) loading of 1 mol% for 3 hrs at room temperature
Figure S17. ¹ H NMR spectra for Hydroboration of C_6H_5CHO with HBpin in benzene-d ₆ using catalyst (2) loading of 1 mol% for 1 hrs at room temperature
Figure S18. ¹ H NMR spectra for Hydroboration of C_6H_5CHO with HBpin in benzene-d ₆ using catalyst (2) loading of 1 mol% for 3 hrs at room temperature
Figure S19. ¹ H NMR spectra for Hydroboration of C_6H_5CHO with HBpin in benzene-d ₆ using catalyst (1) loading of 1 mol% for 1 hrs at room temperature23
Figure S20. ¹ H NMR spectra for Hydroboration of C_6H_5CHO with HBpin in benzene-d ₆ using catalyst (1) loading of 1 mol% for 3 hrs at room temperature
Figure S21. ¹ H NMR spectra for Hydroboration of C_6H_5CHO with HBpin in benzene-d ₆ using catalyst (1) loading of 0.5 mol% for 1 hrs at room temperature24
Figure S22. ¹ H NMR spectra for Hydroboration of C_6H_5CHO with HBpin in benzene-d ₆ using catalyst (1) loading of 0.5 mol% for 3 hrs at room temperature24
Figure S23. ¹ H NMR spectra for Cyanosilylation of C_6H_5 CHO with TMSCN in benzene-d ₆ using catalyst (1) loading of 1 mol% for 1 hrs at room temperature25
Figure S24. ¹ H NMR spectra for Cyanosilylation of C_6H_5 CHO with TMSCN in benzene-d ₆ using catalyst (1) loading of 1 mol% for 3 hrs at room temperature25
Figure S25. ¹ H NMR spectra for Cyanosilylation of C_6H_5 CHO with TMSCN in benzene-d ₆ using catalyst (1) loading of 0.25 mol% for 1 hrs at room temperature26
Figure S26. ¹ H NMR spectra for Cyanosilylation of C_6H_5 CHO with TMSCN in benzene-d ₆ using catalyst (1) loading of 0.25 mol% for 3 hrs at room temperature26
Figure S27. ¹ H NMR spectra for Hydroboration of 4-Nitrobenzaldehyde with HBPin in benzene-d ₆ using catalyst (1) loading of 1 mol% for 1 hrs at room temperature27
Figure S28. ¹ H NMR spectra for Hydroboration of 4-Nitrobenzaldehyde with HBPin in benzene-d ₆ using catalyst (1) loading of 1 mol% for 3 hrs at room temperature27
Figure S29. ¹ H NMR spectra for Hydroboration of 3-Nitrobenzaldehyde with HBPin in benzene-d ₆ using catalyst (1) loading of 1 mol% for 1 hrs at room temperature
Figure S30. ¹ H NMR spectra for Hydroboration of 3-Nitrobenzaldehyde with HBPin in benzene-d ₆ using catalyst (1) loading of 1 mol% for 3 hrs at room temperature
Figure S31. ¹ H NMR spectra for Hydroboration of 2-Nitrobenzaldehyde with HBPin in benzene-d ₆ using catalyst (1) loading of 1 mol% for 1 hrs at room temperature
Figure S32. ¹ H NMR spectra for Hydroboration of 2-Nitrobenzaldehyde with HBPin in benzene-d ₆ using catalyst (1) loading of 1 mol% for 3 hrs at room temperature
Figure S33. ¹ H NMR spectra for Hydroboration of 3,4-Dichlorobenzaldehyde with HBPin in benzene- d_6 using catalyst (1) loading of 1 mol% for 1 hrs at room temperature
Figure S34. ¹ H NMR spectra for Hydroboration of 3,4-Dichlorobenzaldehyde with HBPin in benzene-d ₆ using catalyst (1) loading of 1 mol% for 3 hrs at room temperature
Figure S35. ¹ H NMR spectra for Hydroboration of 4-Methylbenzaldehyde with HBPin in benzene-d ₆ using catalyst (1) loading of 1 mol% for 1 hrs at room temperature

Figure S36. ¹ H NMR spectra for Hydroboration of 4-Methylbenzaldehyde with HBPin in benzene-d ₆ using catalyst (1) loading of 1 mol% for 3 hrs at room temperature	1
Figure S37. ¹ H NMR spectra for Hydroboration of 4-Methoxybenzaldehyde with HBPin in benzene-d ₆ using catalyst (1) loading of 1 mol% for 1 hrs at room temperature	
Figure S38. ¹ H NMR spectra for Hydroboration of 4-Methoxybenzaldehyde with HBPin in benzene-d ₆ using catalyst (1) loading of 1 mol% for 3 hrs at room temperature	·
Figure S39. ¹ H NMR spectra for Hydroboration of 4-(dimethylamino)benzaldehyde with HBPin in benzene- d ₆ using catalyst (1) loading of 1 mol% for 1 hrs at room temperature	
Figure S40. ¹ H NMR spectra for Hydroboration of 4-(dimethylamino)benzaldehyde with HBPin in benzene- d ₆ using catalyst (1) loading of 1 mol% for 3 hrs at room temperature	
Figure S41. ¹ H NMR spectra for Hydroboration of PhCHO with HBPin in benzene-d ₆ using catalyst (1) loading of 1 mol% for 1-3 hrs at room temperature	4
NMR spectra of pure products	4
Figure S42. Spin density distribution calculated by the DFT B3LYP/def2tzvp method for paramagnetic germylene 1a	6


Scheme S1. Catalytic cycle and proposed mechanism for hydroboration of benzaldehyde using two molecules of 1 as catalysts. The DFT B3LYP/def2svp and CAM-B3LYP/def2svp (SMD, solvent – benzene) calculated relative enthalpies (ΔH^{298} , kcal/mol) of the intermediates and TS are shown in blue and green, respectively.

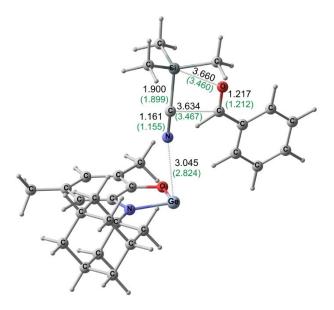
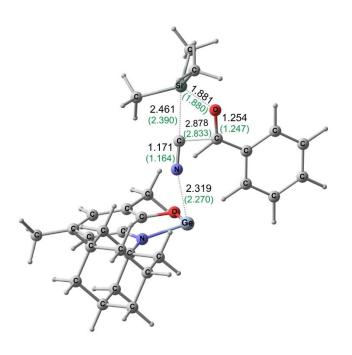
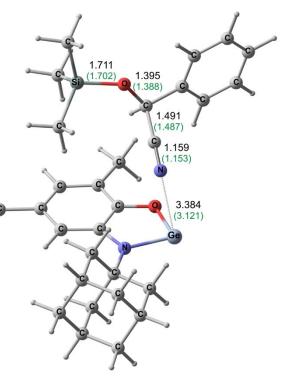


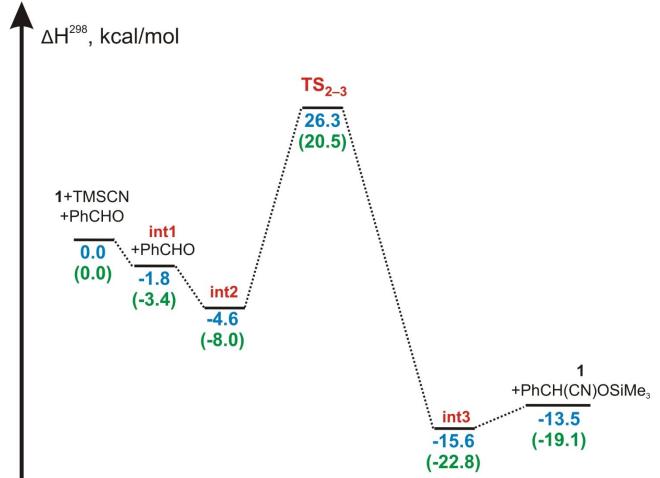
Table S1. Total energies without (E_{total}), with (E_{total}^{ZPE}) taking into account for the energies of zero-point harmonic vibrations and total enthalpies (H_{total}^{298}), all values are given in a.u.; relative energies without (ΔE), with (ΔE^{ZPE}) taking into account for the energies of zero-point harmonic vibrations and relative enthalpies (ΔH^{298}), all values are given in kcal/mol, of reactants, intermediates and transition states for cyanosilylation of benzaldehyde with **1** as catalyst calculated by the DFT B3LYP/def2svp method with inclusion of nonspecific solvation (SMD, solvent – benzene). The DFT CAM-B3LYP/def2svp (SMD, solvent – benzene) data are shown in brackets.

Structure	E _{total}	ΔE	$E_{\rm total}^{\rm ZPE}$	$\Delta E^{\rm ZPE}$	$H_{\rm total}^{298}$	ΔH^{298}
1	-2906.037040		-2905.659724		-2905.640698	
	(-2905.659206)		(-2905.277274)		(-2905.258513)	
	-501.895293		-501.776491		-501.766081	
TMSCN	(-501.752940)		(-501.632991)		(-501.622669)	
PhCHO	-345.334643		-345.224558		-345.217366	
РІСПО	(-345.148149)		(-345.036780)		(-345.029637)	
DECU(CN)OS:Ma	-847.254612		-847.022382		-847.005016	
PhCH(CN)OSiMe ₃	(-846.934685)		(-846.699862)		(-846.682670)	
1+TMSCN+PhCHO	-3753.266977	0.0	-3752.660773	0.0	-3752.624145	0.0
I + IIVISEN + I IIEIIO	(-3752.560295)	(0.0)	(-3751.947045)	(0.0)	(-3751.910819)	(0.0)
int1	-3407.936990		-3407.440458		-3407.409639	
IIILI	(-3407.419266)		(-3406.916932)		(-3406.886523)	
int1+PhCHO	-3753.271633	-2.9	-3752.665016	-2.7	-3752.627005	-1.8
Intr Flichto	(-3752.567415)	(-4.5)	(-3751.953712)	(-4.2)	(-3751.916160)	(-3.4)
int2	-3753.278444	-7.2	-3752.670697	-6.2	-3752.631502	-4.6
11112	(-3752.577135)	(-10.6)	(-3751.962214)	(-9.5)	(-3751.923571)	(-8.0)
тс	-3753.227816	24.6	-3752.619827	25.7	-3752.582289	26.3
TS ₂₋₃	(-3752.530357)	(18.8)	(-3751.914952)	(20.1)	(-3751.878099)	(20.5)
int3	-3753.296855	-18.7	-3752.686765	-16.3	-3752.649011	-15.6
IIIto	(-3752.601766)	(-26.0)	(-3751.984465)	(-23.5)	(-3751.947172)	(-22.8)
1 DECU(CN)OS:Ma	-3753.291652	-15.5	-3752.682106	-13.4	-3752.645714	-13.5
1+PhCH(CN)OSiMe ₃	(-3752.593891)	(-21.1)	(-3751.977136)	(-18.9)	(-3751.941183)	(-19.1)


Figure S1. Optimized geometries of reaction intermediates and transition state for cyanosilylation of benzaldehyde with 1 as catalyst calculated by the DFT B3LYP/def2svp (SMD, solvent – benzene) method. Hereinafter bond lengths are given in Å, the DFT CAM-B3LYP/def2svp (SMD, solvent – benzene) data are shown in brackets.



int2



int3

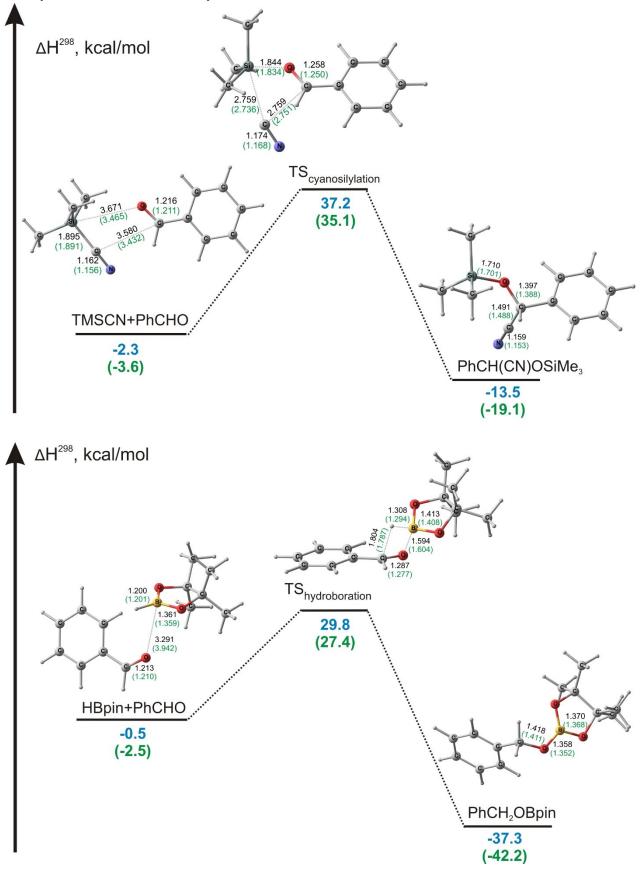

Figure S2. Energy profile of cyanosilylation of benzaldehyde catalyzed by 1, in accordance with path found by the DFT B3LYP/def2svp (SMD, solvent – benzene) method.

Table S2. Total energies without (E_{total}), with (E_{total}^{ZPE}) taking into account for the energies of zero-point harmonic vibrations and total enthalpies (H_{total}^{298}), all values are given in a.u.; relative energies without (ΔE), with (ΔE^{ZPE}) taking into account for the energies of zero-point harmonic vibrations and relative enthalpies (ΔH^{298}), all values are given in kcal/mol, of reactants, transition states and products for cyanosilylation and hydroboration of benzaldehyde calculated by the DFT B3LYP/def2svp method with inclusion of nonspecific solvation (SMD, solvent – benzene). The DFT CAM-B3LYP/def2svp (SMD, solvent – benzene) data are shown in brackets.

Structure	E _{total}	ΔE	$E_{\rm total}^{\rm ZPE}$	ΔE^{ZPE}	$H_{\rm total}^{298}$	ΔH^{298}		
Cyanosilylation of benzaldehyde								
TMSCN	-501.895293		-501.776491		-501.766081			
IMSCI	(-501.752940)		(-501.632991)		(-501.622669)			
PhCHO	-345.334643		-345.224558		-345.217366			
гисно	(-345.148149)		(-345.036780)		(-345.029637)			
(TMSCN+PhCHO)	-847.235781	-3.7	-847.006082	-3.2	-846.987174	-2.3		
(IWSCN I IICIIO)	(-846.908995)	(-5.0)	(-846.676687)	(-4.3)	(-846.658061)	(-3.6)		
TS	-847.171811	36.5	-846.942114	37.0	-846.924244	37.2		
TS _{cyanosilylation}	(-846.846317)	(34.4)	(-846.614188)	(34.9)	(-846.596441)	(35.1)		
PhCH(CN)OSiMe ₃	-847.254612	-15.5	-847.022382	-13.4	-847.005016	-13.5		
	(-846.934685)	(-21.1)	(-846.699862)	(-18.9)	(-846.682670)	(-19.1)		
	Ну	droboratio	on of benzaldehyd	e				
HBpin	-411.575518		-411.386133		-411.375683			
пврш	(-411.365462)		(-411.174067)		(-411.163733)			
PhCHO	-345.334643		-345.224558		-345.217366			
I licito	(-345.148149)		(-345.036780)		(-345.029637)			
(HBpin+PhCHO)	-756.913088	-1.8	-756.612828	-1.3	-756.593830	-0.5		
(HBpin+PhCHO)	(-756.519813)	(-3.9)	(-756.216074)	(-3.3)	(-756.197330)	(-2.5)		
TO	-756.861894	30.3	-756.562821	30.0	-756.545563	29.8		
$TS_{hydroboration}$	(-756.469329)	(27.8)	(-756.166856)	(27.6)	(-756.149714)	(27.4)		
PhCH OPpin	-756.973881	-40.0	-756.669073	-36.6	-756.652415	-37.3		
PhCH ₂ OBpin	(-756.586327)	(-45.6)	(-756.277878)	(-42.1)	(-756.260596)	(-42.2)		

Figure S3. DFT B3LYP/def2svp (SMD, solvent – benzene) computational results on cyanosilylation and hydroboration of benzaldehyde.

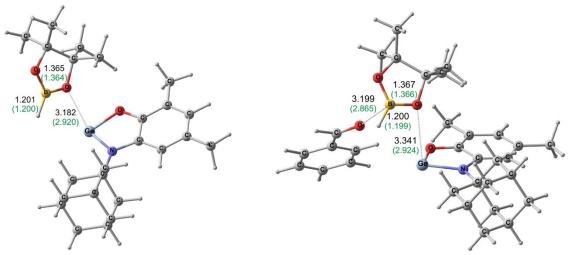


Table S3. Total energies without (E_{total}), with (E_{total}^{ZPE}) taking into account for the energies of zero-point harmonic vibrations and total enthalpies (H_{total}^{298}), all values are given in a.u.; relative energies without (ΔE), with (ΔE^{ZPE}) taking into account for the energies of zero-point harmonic vibrations and relative enthalpies (ΔH^{298}), all values are given in kcal/mol, of reactants, intermediates and transition states for hydroboration of benzaldehyde with 1 as catalyst, calculated by the DFT B3LYP/def2svp method with inclusion of nonspecific solvation (SMD, solvent – benzene). The DFT CAM-B3LYP/def2svp (SMD, solvent – benzene) data are shown in brackets.

Structure	E _{total}	ΔE	$E_{\rm total}^{\rm ZPE}$	ΔE^{ZPE}	$H_{\rm total}^{298}$	ΔH^{298}	
1	-2906.037040		-2905.659724		-2905.640698		
1	(-2905.659206)		(-2905.277274)		(-2905.258513)		
HBpin	-411.575518		-411.386133		-411.375683		
	(-411.365462)		(-411.174067)		(-411.163733)		
DECUO	-345.334643		-345.224558		-345.217366		
PhCHO	(-345.148149)		(-345.036780)		(-345.029637)		
	-756.973881		-756.669073		-756.652415		
PhCH ₂ OBpin	(-756.586327)		(-756.277878)		(-756.260596)		
		I	Path 1			1	
1 UD at a Dh CUO	-3662.947202	0.0	-3662.270415	0.0	-3662.233747	0.0	
1 + HBpin +PhCHO	(-3662.172818)	(0.0)	(-3661.488121)	(0.0)	(-3661.451883)	(0.0)	
;n+1	-3317.615541		-3317.048189		-3317.017299		
int4	(-3317.030072)		(-3316.456423)		(-3316.425939)		
int4+PhCHO	-3662.950184	-1.9	-3662.272747	-1.5	-3662.234665	-0.6	
Int4+PACHO	(-3662.178221)	(-3.4)	(-3661.493203)	(-3.2)	(-3661.455576)	(-2.3)	
• 4 5	-3662.953462	-3.9	-3662.275612	-3.3	-3662.237101	-2.1	
int5	(-3662.183385)	(-6.6)	(-3661.497204)	(-5.7)	(-3661.458469)	(-4.1)	
TC	-3662.902698	27.9	-3662.226063	27.8	-3662.188351	28.5	
TS ₅₋₆	(3662.136438)	(22.8)	(-3661.451349)	(23.1)	(-3661.414255)	(23.6)	
in+(-3663.012506	-41.0	-3662.330072	-37.4	-3662.291853	-36.5	
int6	(-3662.252742)	(-50.2)	(-3661.561984)	(-46.3)	(-3661.524514)	(-45.6)	
1 DhCU ODrin	-3663.010922	-40.0	-3662.328797	-36.6	-3662.293113	-37.3	
1+ PhCH ₂ OBpin	(-3662.245525)	(-45.6)	(-3661.555272)	(-42.1)	(-3661.519109)	(-42.2)	
		I	Path 2				
	-6568.984243	0.0	-6567.930139	0.0	-6567.874445	0.0	
1+1+HBpin+PhCHO	(-6567.832024)	(0.0)	(-6566.765395)	(0.0)	(-6566.710396)	(0.0)	
in 47	-6223.655414		-6222.709985		-6222.658719		
int7	(-6222.694252)		(-6221.738137)		(-6221.687357)		
	-6568.990057	-3.6	-6567.934543	-2.8	-6567.876085	-1.0	
int7+PhCHO	(-6567.842402)	(-6.5)	(-6566.774917)	(-6.0)	(-6566.716994)	(-4.1)	
40	-6568.993149	-5.6	-6567.937329	-4.5	-6567.877314	-1.8	
int8	(-6567.848999)	(-10.7)	(-6566.780557)	(-9.5)	(-6566.721475)	(-7.0)	
TS	-6568.942902	25.9	-6567.887510	26.8	-6567.829617	28.1	
TS ₈₋₉	(-6567.802359)	(18.6)	(-6566.734313)	(19.5)	(-6566.677303)	(20.8)	
int0	-6569.052726	-43.0	-6567.992081	-38.9	-6567.933421	-37.0	
int9	(-6567.915497)	(-52.4)	(-6566.842214)	(-48.2)	(-6566.784533)	(-46.5)	
1+1+DhCU ODnin	-6569.047962	-40.0	-6567.988521	-36.6	-6567.933811	-37.3	
1+1+PhCH ₂ OBpin	(-6567.904731)	(-45.6)	(-6566.832546)	(-42.1)	(-6566.777622)	(-42.2)	
Path 3							

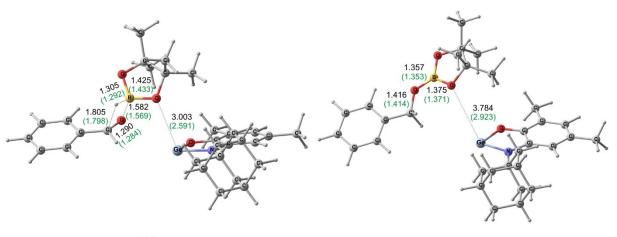

1+ HBpin+PhCHO	-3662.947202	0.0	-3662.270415	0.0	-3662.233747	0.0
	(-3662.172818)	(0.0)	(-3661.488121)	(0.0)	(-3661.451883)	(0.0)
• (10	-3251.376556		-3250.888390		-3250.860891	
int10	(-3250.817220)		(-3250.323213)		(-3250.296131)	
int10+HBpin	-3662.952074	-3.1	-3662.274523	-2.6	-3662.236574	-1.8
muu	(-3662.182682)	(-6.2)	(-3661.497280)	(-5.7)	(-3661.459864)	(-5.0)
int11	-3662.954200	-4.4	-3662.276269	-3.7	-3662.237679	-2.5
	(-3662.184986)	(-7.6)	(-3661.498777)	(-6.7)	(-3661.459950)	(-5.1)
TS ₁₁₋₁₂	-3662.904431	26.8	-3662.227335	27.0	-3662.189742	27.6
	(-3662.138437)	(21.6)	(-3661.453417)	(21.8)	(-3661.416240)	(22.4)
int12	-3663.012044	-40.7	-3662.328940	-36.7	-3662.291086	-36.0
	(-3662.252971)	(-50.3)	(-3661.561826)	(-46.3)	(-3661.524464)	(-45.5)
1+PhCH ₂ OBpin	-3663.010922	-40.0	-3662.328797	-36.6	-3662.293113	-37.3
	(-3662.245525)	(-45.6)	(-3661.555272)	(-42.1)	(-3661.519109)	(-42.2)

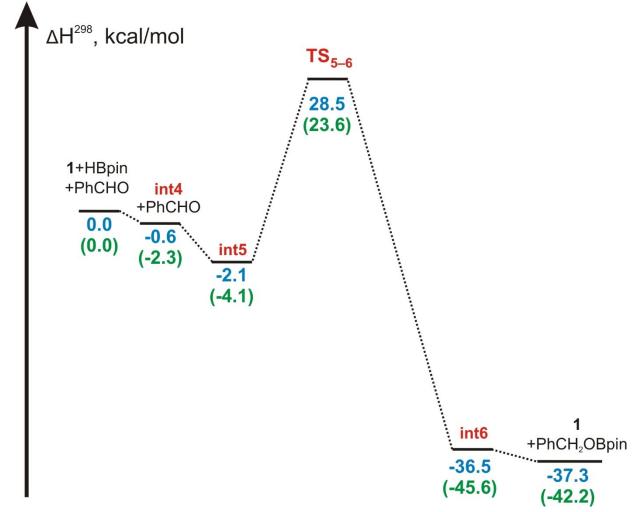
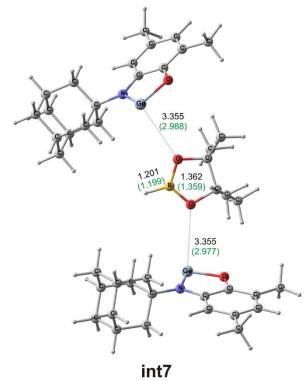
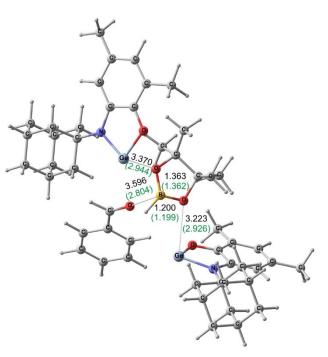
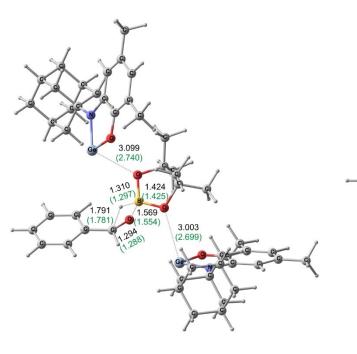
Figure S4. Optimized geometries of reaction intermediates and transition state for hydroboration of benzaldehyde with 1 as catalyst calculated by the DFT B3LYP/def2svp (SMD, solvent – benzene) method.

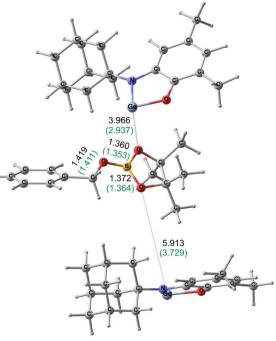
int5

TS₅₋₆

int6

Figure S5. Energy profile of hydroboration of benzaldehyde catalyzed by 1, in accordance with path 1 found by the DFT B3LYP/def2svp (SMD, solvent – benzene) method.


Figure S6. Optimized geometries of reaction intermediates and transition state for hydroboration of benzaldehyde with 1 as catalyst calculated by the DFT B3LYP/def2svp (SMD, solvent – benzene) method.

int8

TS₈₋₉

int9

Figure S7. Energy profile of hydroboration of benzaldehyde catalyzed by 1, in accordance with path 2 found by the DFT B3LYP/def2svp (SMD, solvent – benzene) method.

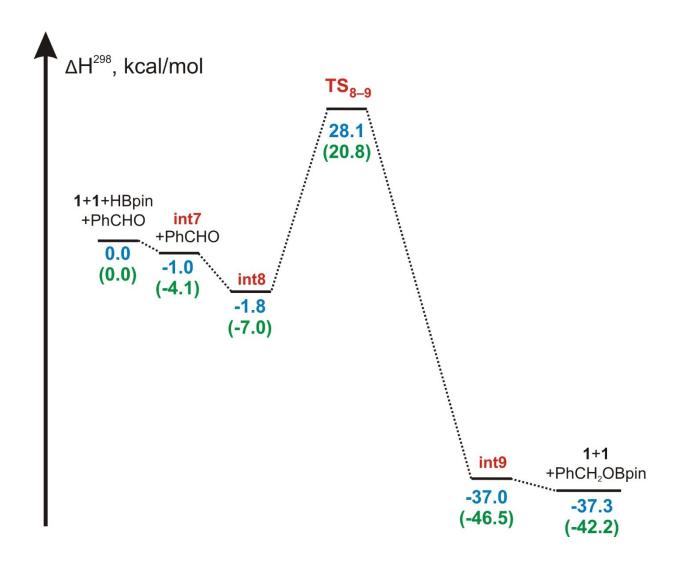
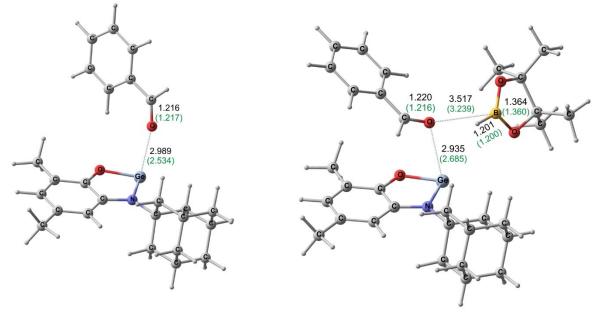
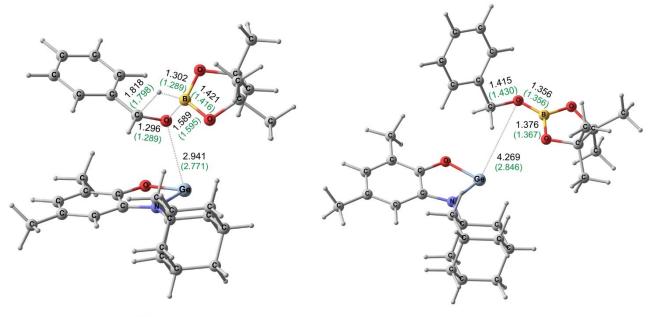




Figure S8. Optimized geometries of reaction intermediates and transition state for hydroboration of benzaldehyde with 1 as catalyst calculated by the DFT B3LYP/def2svp (SMD, solvent – benzene) method.

int11

TS₁₁₋₁₂

int12

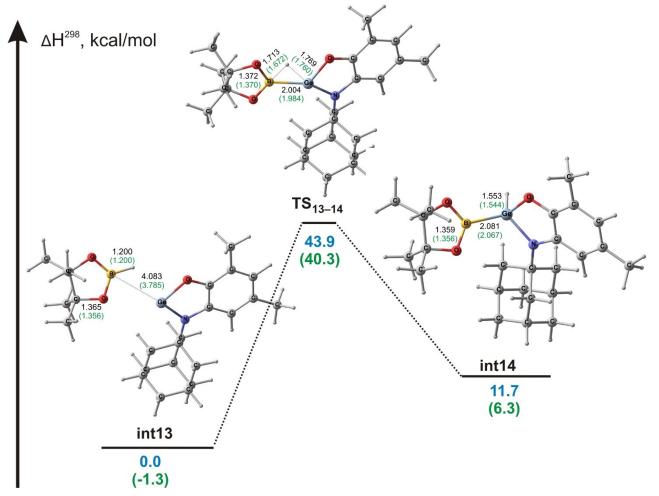

Figure S9. Energy profile of hydroboration of benzaldehyde catalyzed by 1, in accordance with path 3 found by the DFT B3LYP/def2svp (SMD, solvent – benzene) method.

Table S4. Total energies without (E_{total}), with (E_{total}^{ZPE}) taking into account for the energies of zero-point harmonic vibrations and total enthalpies (H_{total}^{298}), all values are given in a.u.; relative energies without (ΔE), with (ΔE^{ZPE}) taking into account for the energies of zero-point harmonic vibrations and relative enthalpies (ΔH^{298}), all values are given in kcal/mol, of reactant, transition state and product for oxidative addition of HBpin to 1 calculated by the DFT B3LYP/def2svp method with inclusion of nonspecific solvation (SMD, solvent – benzene). The DFT CAM-B3LYP/def2svp (SMD, solvent – benzene) data are shown in brackets.

Structure	$E_{\rm total}$	ΔE	$E_{\rm total}^{\rm ZPE}$	$\Delta E^{\rm ZPE}$	$H_{\rm total}^{298}$	ΔH^{298}
1+ HBpin	-3317.612559	0.0	-3317.045857	0.0	-3317.016381	0.0
	(-3317.024668)	(0.0)	(-3316.451341)	(0.0)	(-3316.422246)	(0.0)
int13	-3317.614419	-1.2	-3317.047125	-0.8	-3317.016189	0.0
Intis	(-3317.027876)	(-2.0)	(-3316.453982)	(-1.7)	(-3316.424339)	(-1.3)
TS	-3317.539644	45.8	-3316.976370	43.6	-3316.946473	43.9
TS ₁₃₋₁₄	(-3316.957748)	(42.0)	(-3316.387494)	(40.1)	(-3316.358043)	(40.3)
int14	-3317.594082	11.6	-3317.027850	11.3	-3316.997666	11.7
111114	(-3317.014944)	(6.1)	(-3316.442096)	(5.8)	(-3316.412221)	(6.3)

Figure S10. Optimized geometries of reaction intermediates and transition state for oxidative addition of HBpin to 1 calculated by the DFT B3LYP/def2svp (SMD, solvent – benzene) method.

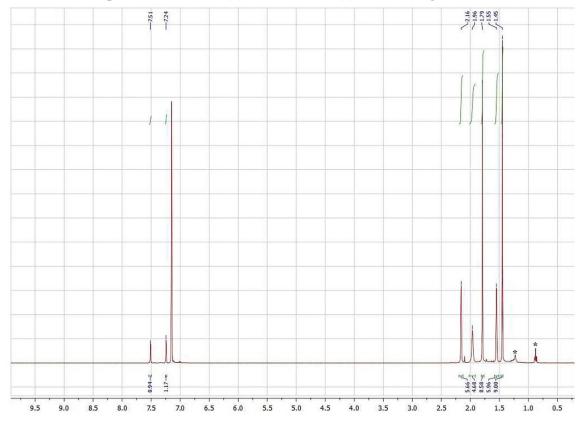


Figure S11. ¹H NMR spectra of ^{Ad}APGe (1) in benzene-d₆. (*) indicates signals of Hexane.

Figure S12. ¹³C NMR spectra of ^{Ad}APGe (1) in benzene-d₆.

Figure S13. ¹H NMR spectra for Hydroboration of C₆H₅CHO with HBpin in absence of catalyst in benzene-d₆.

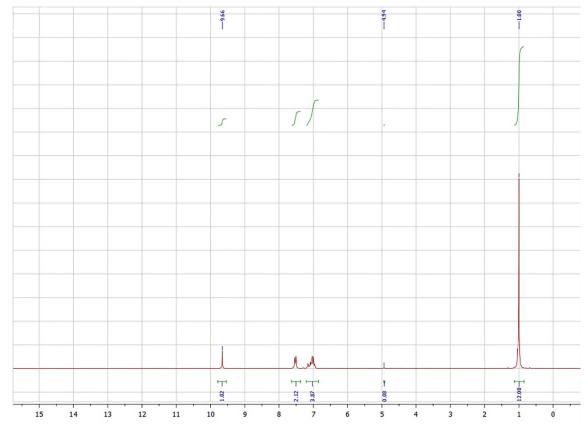


Figure S14. ¹H NMR spectra for Cyanosilylation of C₆H₅CHO with HBpin in absence of catalyst in benzene-d₆.

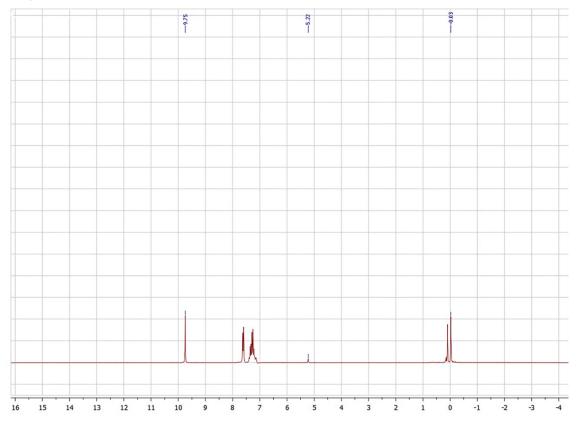


Figure S15. ¹H NMR spectra for Hydroboration of C₆H₅CHO with HBpin in benzene-d₆ using catalyst (3) loading of 1 mol% for 1 hrs at room temperature.

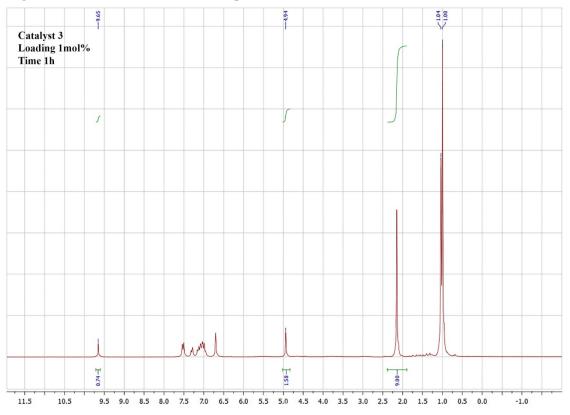


Figure S16. ¹H NMR spectra for Hydroboration of C₆H₅CHO with HBpin in benzene-d₆ using catalyst (3) loading of 1 mol% for 3 hrs at room temperature.

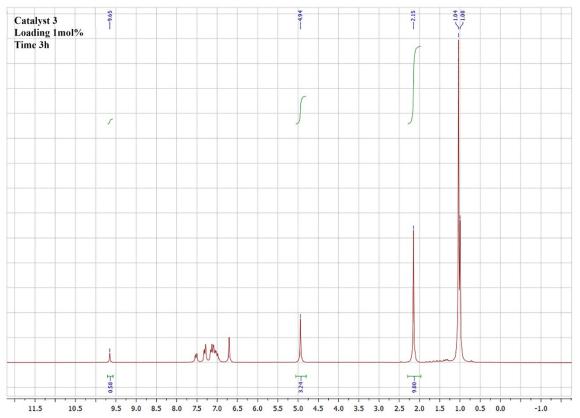


Figure S17. ¹H NMR spectra for Hydroboration of C₆H₅CHO with HBpin in benzene-d₆ using catalyst (2) loading of 1 mol% for 1 hrs at room temperature.

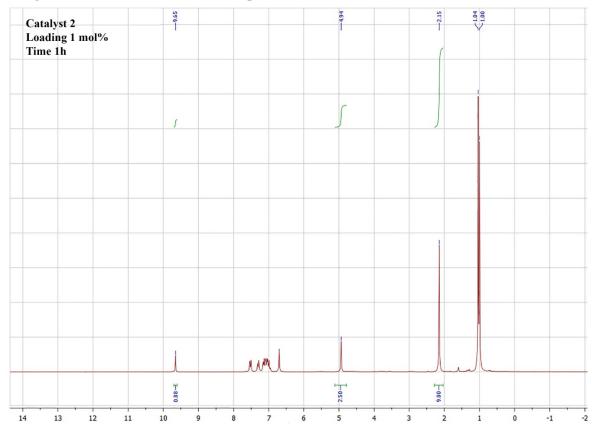


Figure S18. ¹H NMR spectra for Hydroboration of C_6H_5CHO with HBpin in benzene-d₆ using catalyst (2) loading of 1 mol% for 3 hrs at room temperature.

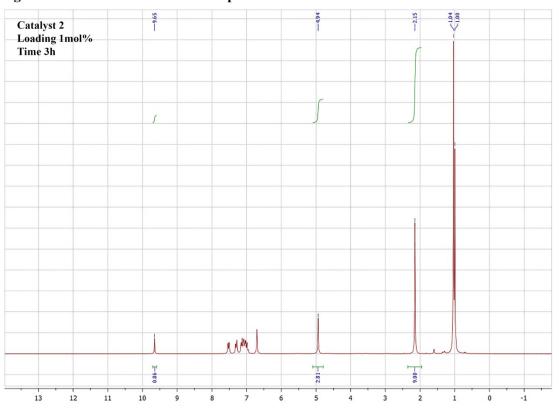


Figure S19. ¹H NMR spectra for Hydroboration of C₆H₅CHO with HBpin in benzene-d₆ using catalyst (1) loading of 1 mol% for 1 hrs at room temperature.

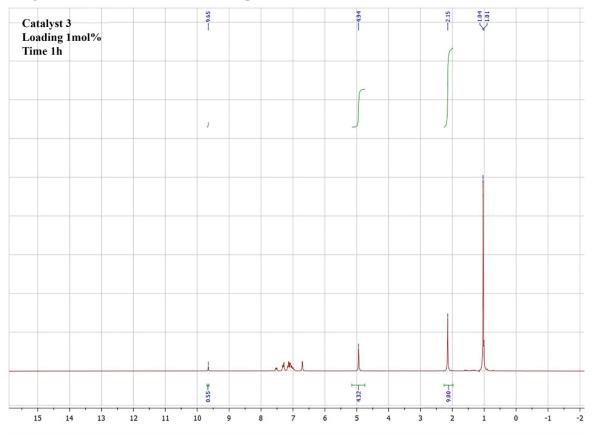
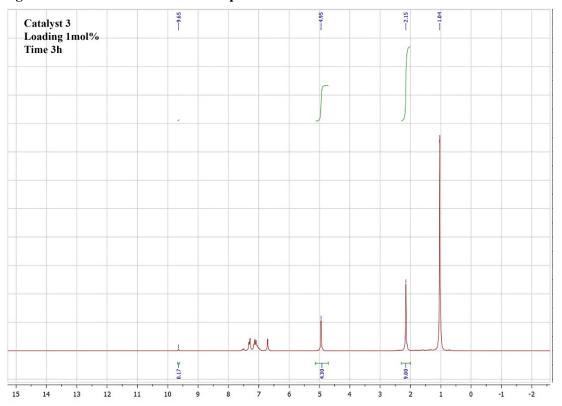



Figure S20. ¹H NMR spectra for Hydroboration of C₆H₅CHO with HBpin in benzene-d₆ using catalyst (1) loading of 1 mol% for 3 hrs at room temperature.

Figure S21. ¹H NMR spectra for Hydroboration of C₆H₅CHO with HBpin in benzene-d₆ using catalyst (1) loading of 0.5 mol% for 1 hrs at room temperature.

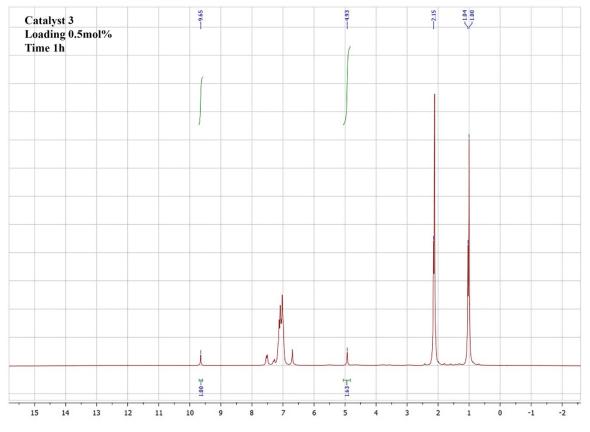
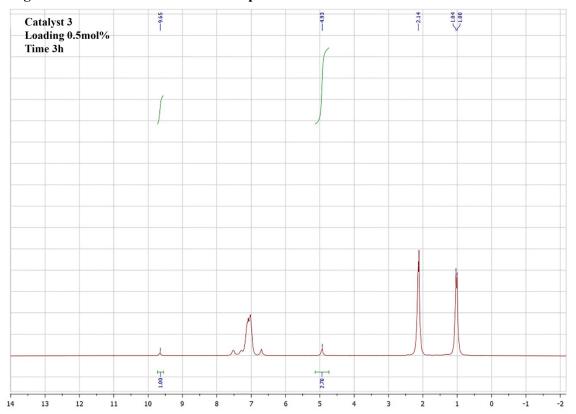
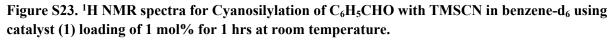




Figure S22. ¹H NMR spectra for Hydroboration of C_6H_5CHO with HBpin in benzene-d₆ using catalyst (1) loading of 0.5 mol% for 3 hrs at room temperature.

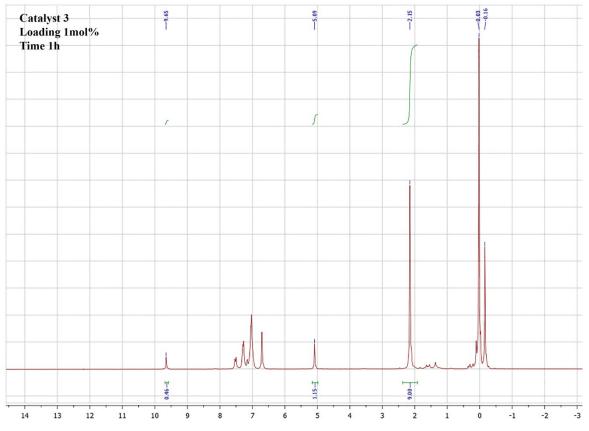


Figure S24. ¹H NMR spectra for Cyanosilylation of C₆H₅CHO with TMSCN in benzene-d₆ using catalyst (1) loading of 1 mol% for 3 hrs at room temperature.

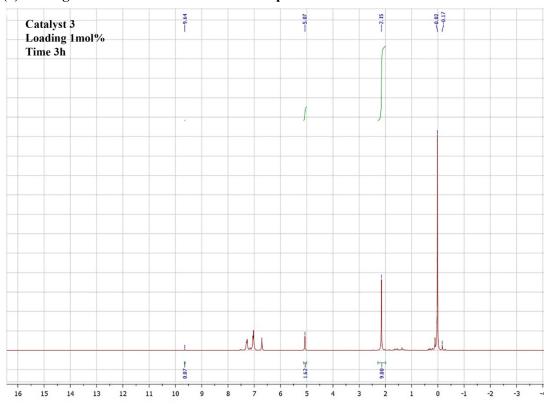


Figure S25. ¹H NMR spectra for Cyanosilylation of C₆H₅CHO with TMSCN in benzene-d₆ using catalyst (1) loading of 0.25 mol% for 1 hrs at room temperature.

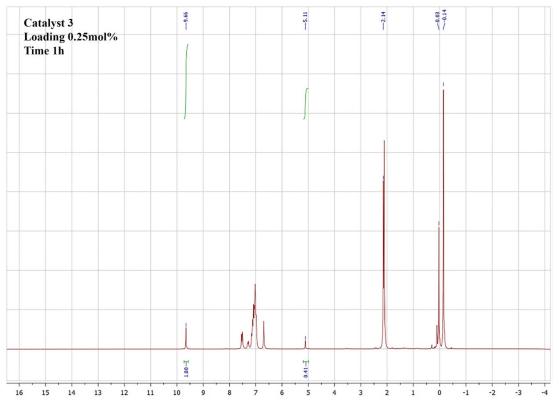


Figure S26. ¹H NMR spectra for Cyanosilylation of C₆H₅CHO with TMSCN in benzene-d₆ using catalyst (1) loading of 0.25 mol% for 3 hrs at room temperature.

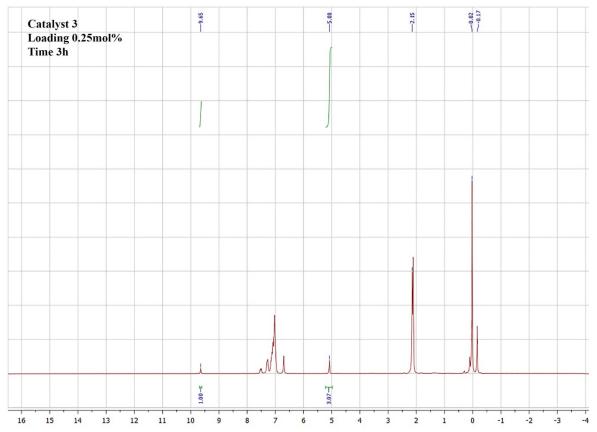


Figure S27. ¹H NMR spectra for Hydroboration of 4-Nitrobenzaldehyde with HBPin in benzene-d₆ using catalyst (1) loading of 1 mol% for 1 hrs at room temperature.

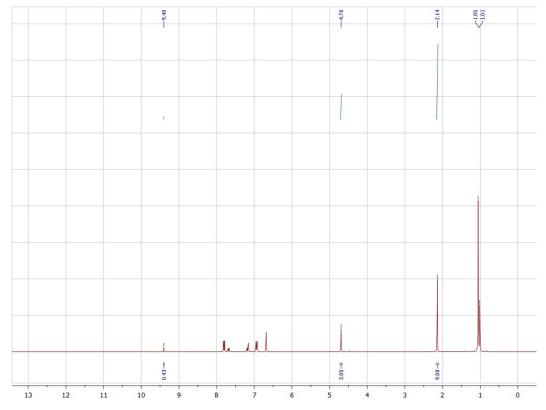


Figure S28. ¹H NMR spectra for Hydroboration of 4-Nitrobenzaldehyde with HBPin in benzene-d₆ using catalyst (1) loading of 1 mol% for 3 hrs at room temperature.

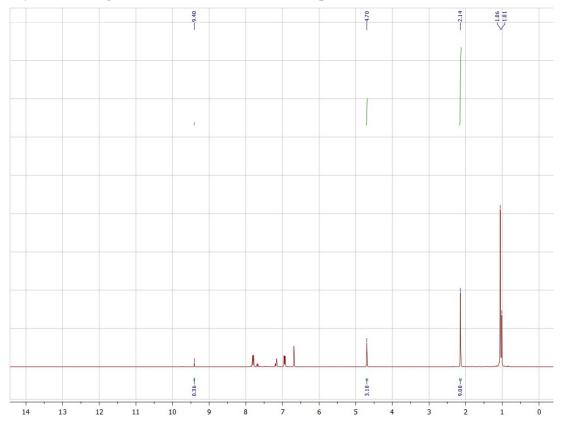


Figure S29. ¹H NMR spectra for Hydroboration of 3-Nitrobenzaldehyde with HBPin in benzene-d₆ using catalyst (1) loading of 1 mol% for 1 hrs at room temperature.

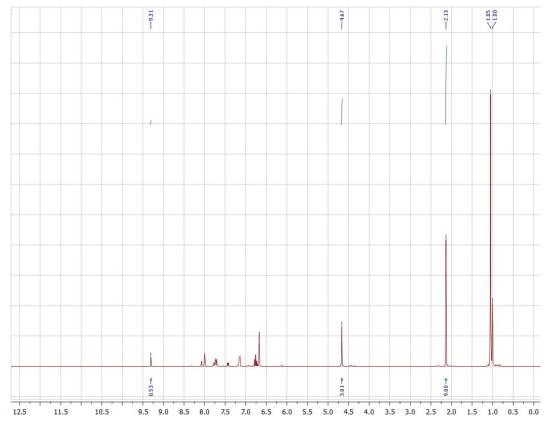


Figure S30. ¹H NMR spectra for Hydroboration of 3-Nitrobenzaldehyde with HBPin in benzene-d₆ using catalyst (1) loading of 1 mol% for 3 hrs at room temperature.

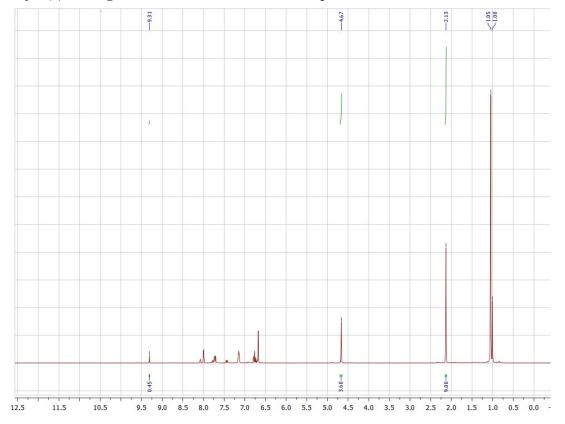


Figure S31. ¹H NMR spectra for Hydroboration of 2-Nitrobenzaldehyde with HBPin in benzene-d₆ using catalyst (1) loading of 1 mol% for 1 hrs at room temperature.

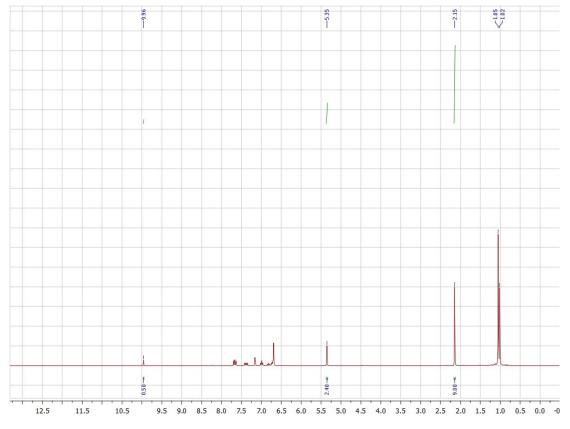


Figure S32. ¹H NMR spectra for Hydroboration of 2-Nitrobenzaldehyde with HBPin in benzene-d₆ using catalyst (1) loading of 1 mol% for 3 hrs at room temperature.

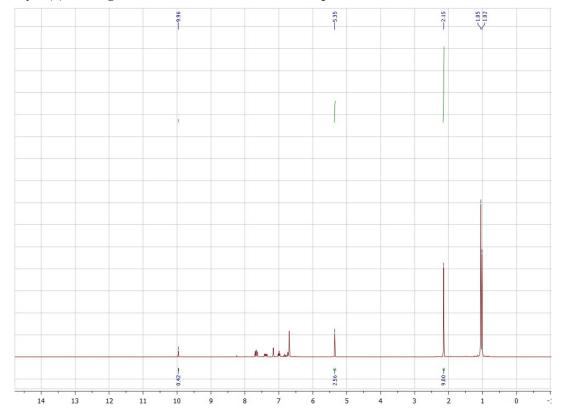


Figure S33. ¹H NMR spectra for Hydroboration of 3,4-Dichlorobenzaldehyde with HBPin in benzened₆ using catalyst (1) loading of 1 mol% for 1 hrs at room temperature.

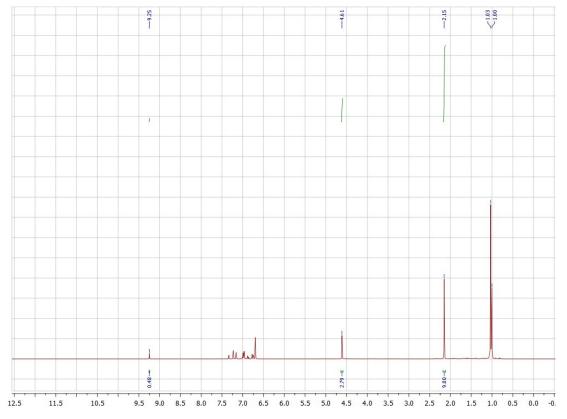


Figure S34. ¹H NMR spectra for Hydroboration of 3,4-Dichlorobenzaldehyde with HBPin in benzened₆ using catalyst (1) loading of 1 mol% for 3 hrs at room temperature.

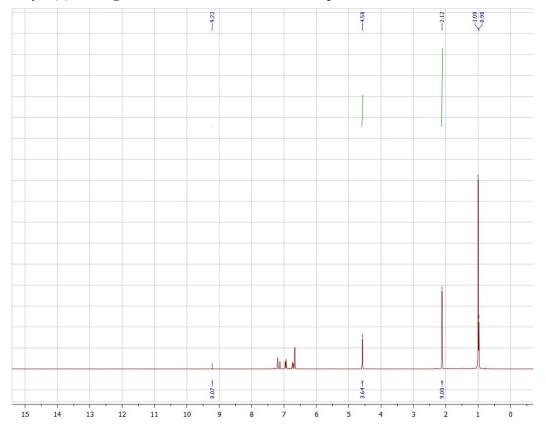


Figure S35. ¹H NMR spectra for Hydroboration of 4-Methylbenzaldehyde with HBPin in benzene-d₆ using catalyst (1) loading of 1 mol% for 1 hrs at room temperature.

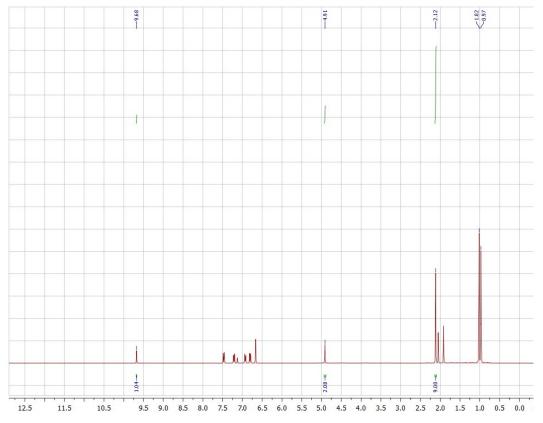


Figure S36. ¹H NMR spectra for Hydroboration of 4-Methylbenzaldehyde with HBPin in benzene-d₆ using catalyst (1) loading of 1 mol% for 3 hrs at room temperature.

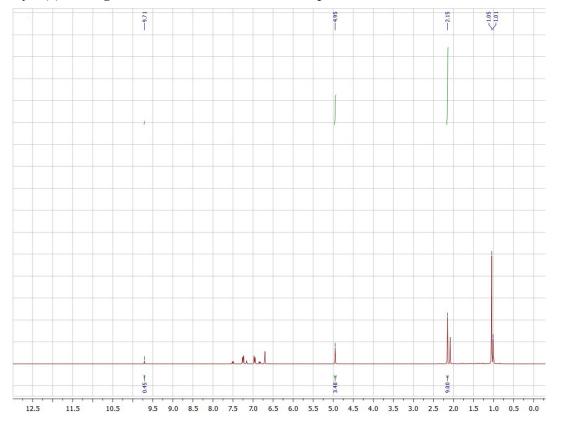


Figure S37. ¹H NMR spectra for Hydroboration of 4-Methoxybenzaldehyde with HBPin in benzene-d₆ using catalyst (1) loading of 1 mol% for 1 hrs at room temperature.

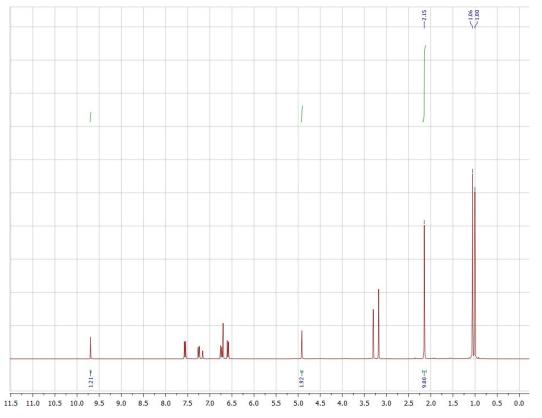


Figure S38. ¹H NMR spectra for Hydroboration of 4-Methoxybenzaldehyde with HBPin in benzene-d₆ using catalyst (1) loading of 1 mol% for 3 hrs at room temperature.

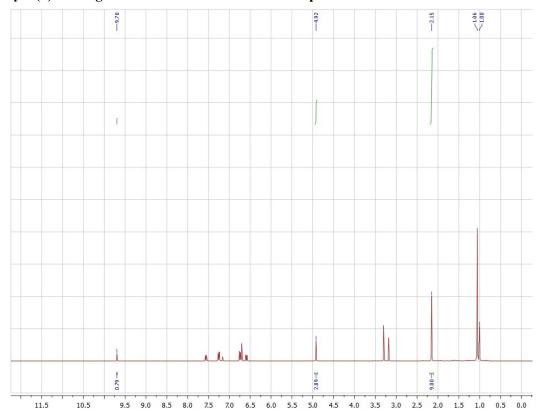


Figure S39. ¹H NMR spectra for Hydroboration of 4-(dimethylamino)benzaldehyde with HBPin in benzene-d₆ using catalyst (1) loading of 1 mol% for 1 hrs at room temperature.

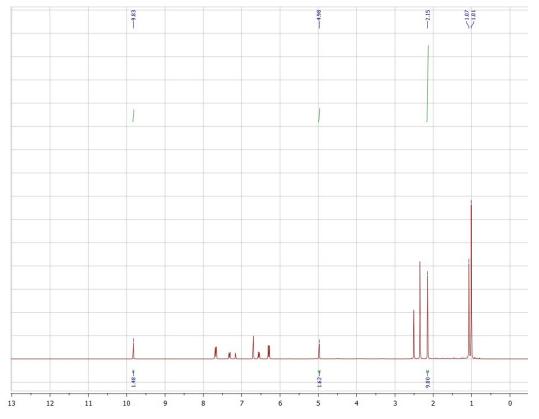


Figure S40. ¹H NMR spectra for Hydroboration of 4-(dimethylamino)benzaldehyde with HBPin in benzene-d₆ using catalyst (1) loading of 1 mol% for 3 hrs at room temperature.

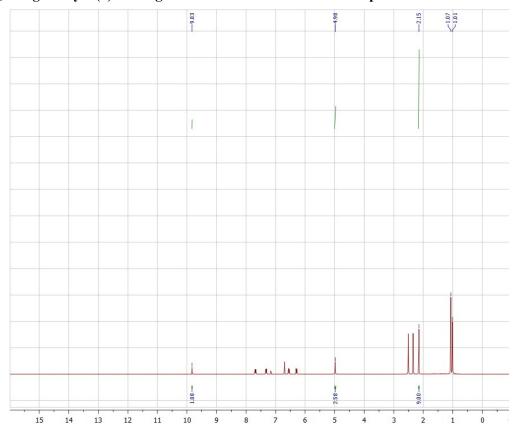
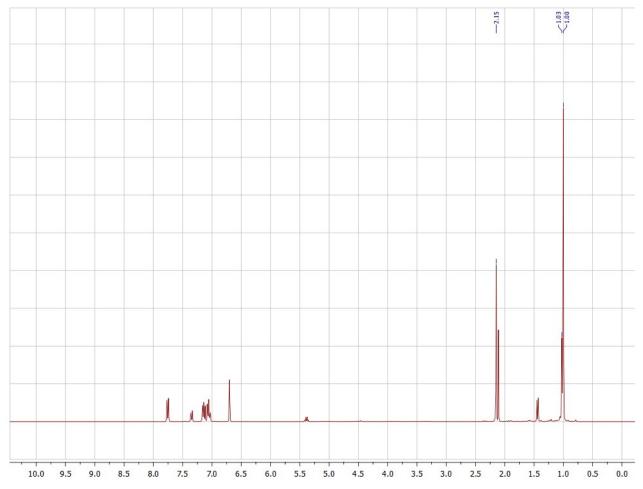



Figure S41. ¹H NMR spectra for Hydroboration of PhCHO with HBPin in benzene-d₆ using catalyst (1) loading of 1 mol% for 1-3 hrs at room temperature.

NMR spectra of pure products.

4,4,5,5-tetramethyl-2-(benzyloxy)-1,3,2-dioxaborolane

¹H NMR (300 MHz, C_6D_6) δ (ppm) = 1.04 (s, 12H), 4.94 (s, 2H), 7.15-7.19 (m, 1H), 7.26-7.35 (m, 4H).

¹³C NMR (300 MHz, C_6D_6) δ (ppm) = 24.5, 66.6, 82.9, 126.6, 127.3, 128.2, 139.1.

¹¹B NMR (400 MHz, C_6D_6) δ (ppm) = 22.5.

2-phenyl-2-((trimethylsilyl)oxy)propanenitrile

¹H NMR (300 MHz, C6D6) δ (ppm) = 0.03 (s, 9H), 5.11 (s, 1H), 7.33-7.42 (m, 3H), 7.54-7.55 (m, 2H).

¹³C NMR (300 MHz, C6D6) δ (ppm) = 1.0, 33.6, 71.6, 121.6, 124.6, 128.6, 142.0.

²⁹Si NMR (400 MHz, C6D6) δ (ppm) = 24.3.

4,4,5,5-tetramethyl-2-((4-methoxybenzyl)oxy)-1,3,2-dioxaborolane (a)

¹H NMR (300 MHz, C₆D₆) δ (ppm) = 1.06 (s, 12H), 3.21 (s, 3H), 4.87 (s, 2H), 6.53 (d, 2H), 7.51 (d, 2H). ¹³C NMR (300 MHz, C₆D₆) δ (ppm) = 24.6, 55.4, 66.6, 83.0, 113.8, 113.9, 128.6, 129.5, 131.6, 159.1. ¹¹B NMR (400 MHz C₆D₆) δ (ppm) = 22.3.

2-((2,4-dichlorobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (b).

¹H NMR (300 MHz, C_6D_6): δ (ppm) = 1.03 (s, 12H), 4.61 (s, 2H), 6.99 (d, 1H), 6.75 (d, 1H), 7.21 (dd, 1H). ¹³C-{1H} NMR (300 MHz, C_6D_6): δ (ppm) = 24.5, 63.5, 83.0, 127.0, 128.6, 128.8, 131.9, 133.4, 135.4,. ¹¹B{1H} NMR (400 MHz, C_6D_6): δ (ppm) = B 22.3

4,4,5,5-tetramethyl-2-((4-methylbenzyl)oxy)-1,3,2-dioxaborolane (c)

¹H NMR (300 MHz, C_6D_6) δ (ppm) = 1.02 (s, 12H), 1.96 (s, 3H), 4.91 (s, 2H), 7.20 (d, 2H), 7.48-7.5 (m, 2H).

¹³C NMR (300 MHz, C₆D₆) δ (ppm) = 21.3, 24.7, 66.7, 83.0, 127.0, 127.2, 129.1, 129.3, 136.4, 137.1. ¹¹B NMR (400 MHz, C₆D₆) δ (ppm) = 22.5.

N,N-dimethyl-4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)aniline (d)

¹H NMR (300 MHz, C₆D₆) δ (ppm) = 1.07 (s, 12H), 2.20 (s, 6H), 4.98 (s, 2H), 6.30 (d, 2H), 7.86 (d, 2H). ¹³C NMR (300 MHz, C₆D₆) δ (ppm) = 24.7, 40.3, 61.6, 83.2, 112.1, 127.2, 129.1, 149.7. ¹¹B NMR (400 MHz, C₆D₆) δ (ppm) = 22.3.

4,4,5,5-tetramethyl-2-((4-nitrobenzyl)oxy)-1,3,2-dioxaborolane (e)

¹H NMR (300 MHz, C_6D_6) δ (ppm) = 1.05 (s, 12H), 4.70 (s, 2H), 6.98 (d, 2H), 7.81 (d, 2H). ¹³C NMR (300 MHz, C_6D_6) δ (ppm) = 24.6, 65.5, 83.4, 123.5, 126.8, 146.5, 147.2. ¹¹B NMR (400 MHz, C_6D_6) δ (ppm) = 22.5.

2-((3-nitrobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (f)

¹H NMR (300 MHz, C_6D_6): δ (ppm) = 1.05 (s, 12H), 4.67 (s, 2H), 6.7-7.81 (m, 1H), 7.25(m, 2H), 7.5(m, 1H), 8.1 (m, 2H).

¹³C NMR (300 MHz, C_6D_6): δ (ppm) = 24.4, 65.6, 83.3, 121.3, 122.0, 126.7, 129.6, 132.4, 141.2.

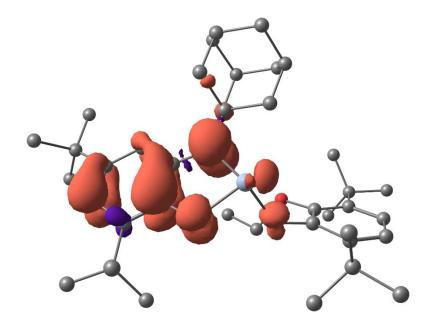
¹¹B NMR (400 MHz, C_6D_6): δ (ppm) = 22.4

2-((2-nitrobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (g)

¹H NMR (300 MHz, C₆D₆): δ (ppm) =1.05 (s, 12H), 5.35 (s, 2H), 6.99 (m, 1H), 7.44 (m, 1H), 7.55 – 7.63 (m, 2H).

¹³C NMR (300 MHz, C_6D_6): δ (ppm) = 24.5, 63.6, 83.1, 127.0, 128.6, 128.8, 132.4, 133.4, 135.4.

¹¹B NMR (400 MHz, C_6D_6): δ (ppm) = 22.4


4,4,5,5-tetramethyl-2-(1-phenylethoxy)-1,3,2-dioxaborolane (h)

¹H NMR (300 MHz, C6D6) δ (ppm) = 1.03 (s, 12H), 1.47-1.49 (m, 3H), 5.79 (s, 1H), 7.00-7.07 (m, 1H), 7.10-7.17 (m, 2H), 7.31-7.34 (m, 2H).

¹³C NMR (300 MHz, C6D6) δ (ppm) = 24.3, 25.4, 72.6, 82.2, 125.3, 127.0, 128.2, 145.0.

¹¹B NMR (300 MHz, C6D6) δ (ppm) = 22.6.

Figure S42. Spin density distribution calculated by the DFT B3LYP/def2tzvp method for paramagnetic germylene 1a.

