Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Information

Biorenewable carbon-supported Ru catalyst for *N*-Alkylation of Amines with Alcohols and Selective Hydrogenation of Nitroarenes

Vishakha Goyal,^[a, b] Naina Sarki,^[a, b] Mukesh Kumar Poddar,^[a] Deependra Tripathi,^[a] Anjan Ray,^[a, b] and Kishore Natte*^[a, b]

^aChemical and Material Sciences Division, Light Stock Processing Division, Analytical Sciences Division, CSIR-Indian Institute of Petroleum (CSIR-IIP), Haridwar Road, Mohkampur, Dehradun 248005, India

^bAcademy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India

*Corresponding author: kishore.natte@iip.res.in or kishorenatte@gmail.com

Table	Title
Section S1	General considerations
Section S2	¹ H and ¹³ C spectral data of <i>N</i> -alkylamines and anilines
Figure S1-S35	¹ H and ¹³ C NMR copies of <i>N</i> -alkylamines and anilines

Section S1: General Considerations.

NMR spectra obtained at 25 °C on a Bruker AVANCE III 500 MHz spectrometer using CDCl₃ or DMSO-*d*⁶ as solvent. Gas chromatography mass spectrometry (GC-MS) analysis was performed using 5977A MSD attached to a 7890B, an Agilent GC system equipped with a 30 m × 0.32 mm id and 0.25 μ m mid-polarity capillary column (DB35MS, 35% phenyl/ 65% dimethylpolysiloxane). Transmission electron microscopy (TEM) analysis performed on a JEM 2100 (JEOL, Japan) microscope and samples were deposited on a Lacey carbon formvar Cu grid upon dispersing in ethanol. X-Ray Diffraction (XRD) patterns of powdered samples were recorded on *PROTO AXRD benchtop X-Ray Diffractometer* at 40 kV and 30 mA using Ni β -filtered Cu K α radiation (l=1.5406 Å) over a 2 theta range of 10-80 degree. X-ray photoelectron spectroscopy analysis of catalyst was carried out using ESCA+, omicron nanotechnology, Oxford Instrument Germany equipped with monochromator Aluminum Source (Al ka radiation $h\nu$ =1486.7ev). The binding energy measurements corrected with reference to the C1s core carbon (284.6ev). Raman Spectra of catalysts obtained on HorbiaJobinYvon Lab Ram HR Evolution Spectrometer equipped with CCD (charged coupled device) detector using an excitation laser wavelength of 633 nm.

Section S2. ¹H and ¹³C spectral data of *N*-alkylamines and anilines

N-benzylaniline

H N

¹**H NMR (500 MHz, CDCl₃)** δ 7.40 – 7.22 (m, 5H), 7.17 (m, 2H), 6.70 (t, *J* = 7.3 Hz, 2H), 6.62 (d, *J* = 8.1 Hz, 1H), 4.30 (s, 2H), 3.99 (s, 1H); ¹³**C NMR (126 MHz, CDCl₃)** δ 148.21, 139.50, 129.34, 128.71, 127.58, 127.30, 117.62, 112.90, 48.36.

N-benzyl-4-methylaniline

Н

¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.15 (m, 5H), 6.90 (d, *J* = 7.9 Hz, 2H), 6.47 (d, *J* = 8.2 Hz, 2H), 4.21 (s, 2H), 2.15 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 144.84, 138.58, 128.69, 127.54, 126.44, 112.28, 47.57, 19.16.

N-benzyl-4-methoxyaniline

H N

¹**H NMR (500 MHz, CDCl₃)** δ 7.35 (m, 4H), 7.26 (m, 1H), 6.81 – 6.70 (m, 2H), 6.64 – 6.54 (m, 2H), 4.28 (s, 2H), 3.73 (s, 3H); ¹³**C NMR (126 MHz, CDCl₃)** δ 152.21, 142.47, 139.70, 128.62, 127.58, 114.93, 114.14, 55.83, 49.27, 29.74.

N-benzyl-3-chloroaniline

¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.24 (m, 5H), 7.24 – 7.19 (m, 1H), 7.13 – 7.06 (t, 1H), 6.99 (t, 1H), 6.65 – 6.54 (m, 2H), 6.41 (d, 2H), 4.25 (s, 1H), 4.23 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 148.15, 137.68, 133.96, 129.16, 127.69, 126.40, 116.35, 111.78, 111.41, 47.03.

N-benzyl-4-fluoroaniline

H

¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.18 (m, 5H), 6.92 – 6.82 (m, 2H), 6.67 – 6.50 (m, 2H), 4.30 (s, 2H), 3.92 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 156.83, 154.96, 144.50, 139.25, 128.70, 127.52, 127.34, 115.79, 115.61, 113.68, 48.94.

N-benzylquinolin-8-amine

¹**H NMR (500 MHz, CDCl₃)** δ 8.75 – 8.68 (m, 1H), 8.05 (m, 1H), 7.44 (m, 2H), 7.37 – 7.24 (m, 5H), 7.05 (d, *J* = 8.2 Hz, 1H), 6.62 (m, 2H), 4.55 (s, 2H); ¹³**C NMR (126 MHz, CDCl₃)** δ 146.96, 144.59, 139.25, 138.24, 136.07, 128.65, 127.79, 127.45, 127.16, 121.45, 114.18, 105.17, 47.72, 29.75.

4-chloroaniline

¹H NMR (500 MHz, CDCl₃) δ 7.09 (d, J = 8.6 Hz, 2), 6.60 (d, J = 5.8 Hz, 2H), 3.65 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 144.96, 129.13, 123.16, 116.25.

Pentafluoroaniline

¹H NMR (500 MHz, CDCl₃) δ 4.04 – 3.54 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 139.09 (s), 137.59 (s), 137.05 (s), 135.82 (s), 134.30 (s), 132.40 (s), 121.88 (s).

Benzo[d][1,3]dioxol-5-amine

¹H NMR (500 MHz, CDCl₃) δ 6.62 (d, J = 8.2 Hz, 1H), 6.29 (d, J = 4.7 Hz, 1H), 6.13 (m, 1H), 5.86 (s, J = 5.6 Hz, 2H), 3.39 (s, J = 130.6 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 148.21, 141.40, 140.37, 108.59, 106.89, 100.68, 98.09.

1-(4-Aminophenyl)ethanone

NH₂ 0

¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, *J* = 8.5 Hz, 2H), 6.64 (d, *J* = 8.5 Hz, 2H), 4.20 (s, 2H), 2.50 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 196.62, 151.26, 130.84, 127.76, 113.72, 83.56, 26.13.

Methyl 4-aminobenzoate

¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.6 Hz, 2H), 6.63 (d, J = 8.6 Hz, 2H), 4.10 (s, 2H), 3.85 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.24, 150.92, 131.62, 119.62, 113.80, 51.65.

2-Aminopyridine

¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 4.4 Hz, 1H), 7.45 – 7.37 (m, 1H), 6.68 – 6.59 (m, 1H), 6.48 (d, J = 8.3 Hz, 1H), 4.83 – 4.48 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 158.57, 151.33, 148.07, 137.73, 113.89, 108.63, 22.28.

Quinolin-8-amine

¹H NMR (500 MHz, CDCl₃) δ 8.77 (m, 1H), 8.07 (m, 1H), 7.44 – 6.89 (m, 4H), 4.99 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 147.47, 143.95, 136.02, 128.86, 127.39, 121.37, 116.08, 110.07. 3-Fluoro-4-morpholinoaniline

¹**H NMR (500 MHz, CDCl₃)** δ 6.79 (t, *J* = 8.9 Hz, 1H), 6.42 (ddd, *J* = 8.6, 8.1, 1.6 Hz, 2H), 3.93 – 3.79 (m, 4H), 3.06 – 2.90 (m, 4H); ¹³**C NMR (126 MHz, CDCl₃)** δ 157.73, 155.77, 142.79, 131.78, 120.21, 110.66, 103.84, 67.18, 51.76.

4-Chlorobenzene-1,2-diamine

¹**H NMR (500 MHz, CDCl₃)** δ 6.69 (s, *J* = 1.7 Hz, 1H), 6.67 (d, *J* = 8.2 Hz, 1H), 6.61 (d, *J* = 8.1 Hz, 1H), 3.39 (m, 4H); ¹³**C NMR (126 MHz, CDCl₃)** δ 136.13, 133.08, 124.82, 119.65, 117.55, 116.25.

Ethyl 4-aminobenzoate

¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.5 Hz, 2H), 6.64 (d, J = 8.5 Hz, 2H), 4.31 (q, J = 7.1 Hz, 2H), 4.17 – 3.96 (s, 2H), 1.36 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 148.21, 141.40, 140.37, 108.59, 106.89, 100.68, 98.09.

Butyl 4-aminobenzoate

¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.6 Hz, 2H), 6.64 (d, J = 8.6 Hz, 2H), 4.26 (t, J= 6.6 Hz, 2H), 4.18 – 4.02 (m, 2H), 1.83 – 1.68 (m, 2H), 1.54 – 1.42 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.82, 150.76, 131.57, 113.79, 64.25, 30.90, 19.33, 13.83.

¹H and ¹³C NMR copies of *N*-alkylamines and anilines

Figure S1:¹HNMR spectra of *N*-benzylaniline

Figure S2:¹³CNMR spectra of *N*-benzylaniline

Figure S3:¹HNMR spectra of *N*-benzyl-4-methylaniline

Figure S4:¹³CNMR spectra of *N*-benzyl-4-methylaniline

Figure S5:¹HNMR spectra of *N*-benzyl-4-methoxyaniline

Figure S6:¹³CNMR spectra of *N*-benzyl-4-methoxyaniline

Figure S7:¹HNMR spectra of *N*-benzyl-3-chloroaniline

Figure S8:¹³CNMR spectra of *N*-benzyl-3-chloroaniline

Figure S9:¹HNMR spectra of *N*-benzyl-4-fluoroaniline

Figure S10:¹³CNMR spectra of *N*-benzyl-4-fluoroaniline

Figure S11:¹HNMR spectra of N-benzylquinolin-8-amine

Figure S12:¹³CNMR spectra of N-benzylquinolin-8-amine

Figure S13:GCMS spectra of N-butylideneaniline

Library Search Results Table

RT	Compound Name	Probability	Molecular Weight	Library
8.97	N-Phenylpyrrolidine	49.65	147	mainlib
8.97	Benzenamine, N-3-butenyl-	41.94	147	mainlib
8.97	1-Benzylazetidine	2.01	147	mainlib

Figure S14:¹HNMR spectra of 4-chloroaniline

Figure S15:¹³CNMR spectra of4-chloroaniline

Figure S16:¹HNMR spectra of pentafluoroaniline

Figure S17:¹³CNMR spectra of pentafluoroaniline

Figure S18:¹HNMR spectra of Benzo[d][1,3]dioxol-5-amine

Figure S19:¹³CNMR spectra of Benzo[d][1,3]dioxol-5-amine

Figure S20:¹HNMR spectra of 1-(4-Aminophenyl)ethanone

Figure S21:¹³CNMR spectra of1-(4-Aminophenyl)ethanone

Figure S22:¹HNMR spectra of Methyl 4-aminobenzoate

Figure S23:¹³CNMR spectra of Methyl 4-aminobenzoate

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Figure S24:¹HNMR spectra of 2-Aminopyridine

Figure S25:¹³CNMR spectra of 2-Aminopyridine

Figure S26:¹HNMR spectra of 8-Aminoquinoline

Figure S27:¹³CNMR spectra of 8-Aminoquinoline

Figure S28:¹HNMR spectra of 3-Fluoro-4-morpholinoaniline

Figure S29:¹³CNMR spectra of 3-Fluoro-4-morpholinoaniline

Figure S30:¹HNMR spectra of 4-Chlorobenzene-1,2-diamine

Figure S31:¹³CNMR spectra of 4-Chlorobenzene-1,2-diamine

140 130 120 110 100 90 f1 (ppm)

Figure S32:¹HNMR spectra of Ethyl 4-aminobenzoate

Figure S33:¹³CNMR spectra of Ethyl 4-aminobenzoate

Figure S35:¹³CNMR spectra of Butyl 4-aminobenzoate

