Electronic Supplementary Information

Synthesis of green fluorescent carbon quantum dots via latex of ficus benghalensis for the detection of tyrosine and fabrication of Schottky barrier diode

Pradeep Kumar Yadav^a, Rishibrind Kumar Upadhyay^b, Deepak Kumar^a, Subhash Chandra^a, Daraksha Bano^a, Satyabrata Jit^b, and Syed Hadi Hasan^a

^aNano Material Research Laboratory, Department of Chemistry, Indian Institute of Technology (BHU), Varanasi -221005, U.P., India.

^bDepartment of Electronics Engineering, Indian Institute of Technology (BHU), Varanasi -221005, U.P., India

Contents		Pages
1. (Fig. S1) Zeta pot	tential of as-prepared G-CQDs	
2. (Fig. S2) Study	of pH change on the fluorescence intensity of	G-CQDs
with correspond	ling photograph under UV – light (λex = 365 nm) f	rom
pH range 2 to 12	2	S3
3. (Fig. S3) Effect o	f NaCl on emission spectra of G-CQDs with	
photograph und	ler UV- light (λex = 365 nm)	S4
4. (Fig. S4) Influence	ce of metal ions on the fluorescence of G-CQDs	S4

- 5. (Table S1) Detail about fluorescence quantum yield measurementS5
- 7. (Table S3) Tyr detection in milk sample by using G-CQDs......S7

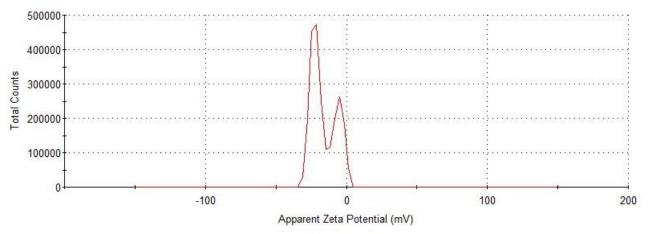
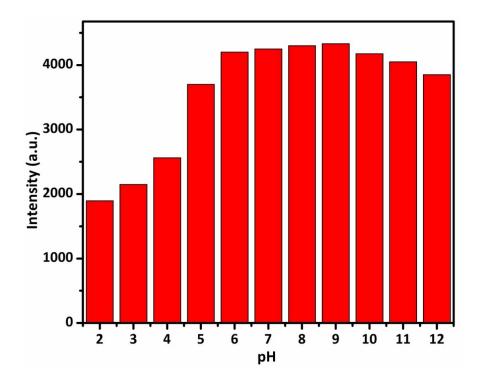



Fig. S1. Zeta potential of as-synthesized G-CQDs.

Fig. S2. Study of pH change on the fluorescent intensity of G-CQDs with corresponding photograph under UV – light ($\lambda ex = 365$ nm) from pH range 2 to 12.

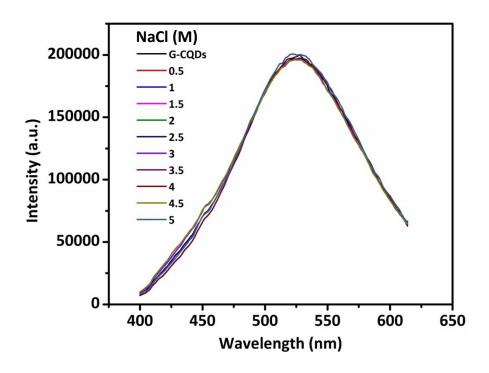


Fig. S3. Effect of ionic strength on the fluorescent intensity of G-CQDs.

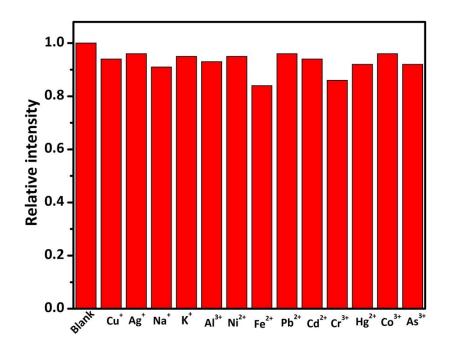


Fig. S4 Influence of metal ions on the fluorescence of G-CQDs.

Table S1. Calculation of fluorescence quantum yield with integrated intensity and absorbance of quinine sulfate and G-CQDs at excitation wavelength 360 nm.

Sample	Integrated	Absorbance at	Quantum yield (%)
	intensity at 360 nm	360 nm	
Quinine sulphate	51246927	0.076	54
(reference)			
G-CQDs	38087271	0.074	41.2

Following equation S1 was used to calculate quantum yield

$$QY = QY_{Ref} \cdot \frac{I}{A} \cdot \frac{A_{Ref}}{I_{Ref}} \cdot \frac{\eta^2}{\eta_{Ref}^2}$$
S1

Where QY and QY_{ref} are quantum yield of G-CQDs and reference respectively, I is the integrated intensity, A is the absorbance and η is the refractive index (η^2/η^2_{ref}

=1) of the solvent.

Table S2 Fluorescence	lifetime	measurement	of	G-CQDs	in	the	presence	and
absence of Tyrosine.								

Compound	Average	life	Chi square	Different life time	Corresponding
	time (ns)			(ns)	Weight (%)
G-CQDs	5.34		1.07	$\tau_1 = 1.03 (B_1 = 5421.42)$	17.06
				τ ₂ = 4.06 (B ₂ =4657.10)	57.68
				τ ₃ = 10.5 (B ₃ =787.87)	25.26
G-CQDs + Tyr	5.18		1.20	$\tau_1 = 1.02 (B_1 = 5323.23)$	15.91
				τ ₂ = 3.89 (B ₂ =4541.37)	51.86
				τ ₃ = 9.77 (B ₃ =1125.83)	32.23

The fluorescence life time decay of G-CQDs was fitted by a tri-exponential role. Chi-square standards and corresponding residual division were reduced to judge the best fit. The adequate fit has a chi-square close to unity.

The fitting system of the fluorescence emission intensity decay $I_{(t)}$ uses a triexponential representation according to the following equation-

$$I_{(t)} = B_1 \exp(-t / \tau_1) + B_2 \exp(-t / \tau_2) + B_3 \exp(-t / \tau_3)$$

Where τ_1 , τ_2 and τ_3 represents time constants of the three radiative decays channel and B_1 , B_2 , B_3 are three corresponding amplitudes.

To calculate the average life time, following equation was used -

$$= \frac{B_1 \tau_1^2 + B_2 \tau_2^2 + B_3 \tau_3^2}{B_1 \tau_1 + B_2 \tau_2 + B_3 \tau_3}$$

Table S3. Detection of Tyr in milk sample by using G-CQDs.

Added (µM)	Found (µM)	Recovery (%)
25	22.8	91.2 %
50	47.3	94.6 %
75	68.8	91.7%
100	93.4	93.4%

RSD = 92.72 ± 1.69%