Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Reactivity and mechanisms of hydridic hydrogen of B-H in ammonia borane towards acetic acids: the ammonia B-monoacyloxy boranes

HuizhenLi, ^{*,ab} Yunhui Li, ^{$\perp a$} Jiaxin Kang, ^{$\perp b$} Lin Fan, ^d Qiuyu Yang, ^{*,b} Shujun Li, ^b Abdul Rahman, ^a

Daqi Chen^{*,c}

^aSchool of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China

^bHenan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China

^cSchool of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China

^dBeijing Normal University Publishing Group, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China

Table of Contents

1. Supporting Results
Figure S1a. ¹¹ B NMR spectrum of NH ₃ BH ₂ OOCCH ₃ in CD ₃ CN
Figure S1b. ¹ H NMR spectrum of the product H_2 in d_8 -Toluene
Figure S2a. ¹¹ B NMR spectrum of 2NH ₃ BH ₂ OOCCH ₂ Cl C ₁₂ H ₂₄ O ₆ (1) in CD ₃ CN5
Figure S2b. ¹ H NMR spectrum of $2NH_3BH_2OOCCH_2Cl C_{12}H_{24}O_6$ (1) in CD ₃ CN
Figure S2c. ¹³ C NMR spectrum of 2NH ₃ BH ₂ OOCCH ₂ Cl C ₁₂ H ₂₄ O ₆ (1) in CD ₃ CN6
Figure S2d. FTIR spectrum of $2NH_3BH_2OOCCH_2Cl C_{12}H_{24}O_6(1)$
Figure S3a. ¹¹ B NMR spectrum of 2NH ₃ BH ₂ OOCCHCl ₂ C ₁₂ H ₂₄ O ₆ (2) in CD ₃ CN7
Figure S3b. ¹ H NMR spectrum of $2NH_3BH_2OOCCHCl_2 C_{12}H_{24}O_6$ (2) in CD ₃ CN7
Figure S3c. ¹³ C NMR spectrum of 2NH ₃ BH ₂ OOCCHCl ₂ C ₁₂ H ₂₄ O ₆ (2) in CD ₃ CN
Figure S3d . FTIR spectrum of 2NH ₃ BH ₂ OOCCHCl ₂ C ₁₂ H ₂₄ O ₆ (2)
Figure S4. ¹¹ B NMR spectrum of NH ₃ BH ₂ OOCCCl ₃ in CD ₃ CN9
Table S1. The chemical shifts of B in the ammonia B-monoacyloxy boranes. 9
TableS2.Crystallographicdatafor $2NH_3BH_2OOCCH_2Cl C_{12}H_{24}O_6$ (1)and
2NH ₃ BH ₂ OOCCHCl ₂ C ₁₂ H ₂₄ O ₆ (2)10
Table S3. Bond lengths (Å) and bond angles ($^{\circ}$) of $2NH_{3}BH_{2}OOCCH_{2}Cl C_{12}H_{24}O_{6}(1)$ 11
Table S3. Bond lengths (Å) and bond angles (\degree) of $2NH_3BH_2OOCCH_2Cl C_{12}H_{24}O_6(1)$ 11 Table S4. Bond lengths (Å) and bond angles (\degree) of $2NH_3BH_2OOCCHCl_2 C_{12}H_{24}O_6(2)$ 11
Table S3. Bond lengths (Å) and bond angles (\degree) of $2NH_3BH_2OOCCH_2Cl C_{12}H_{24}O_6(1)$ 11 Table S4. Bond lengths (Å) and bond angles (\degree) of $2NH_3BH_2OOCCHCl_2 C_{12}H_{24}O_6(2)$ 11 Figure S5. ¹¹ B NMR spectra of the reaction mixture of AB with CH ₃ COOH with different
Table S3. Bond lengths (Å) and bond angles (\degree) of $2NH_3BH_2OOCCH_2Cl C_{12}H_{24}O_6(1)$ 11 Table S4. Bond lengths (Å) and bond angles (\degree) of $2NH_3BH_2OOCCHCl_2 C_{12}H_{24}O_6(2)$ 11 Figure S5. ¹¹ B NMR spectra of the reaction mixture of AB with CH ₃ COOH with differentconcentration in 14 h ($c_{AB} = 1 \sim 6$ M, the conversion of AB: %)
Table S3. Bond lengths (Å) and bond angles (\degree) of 2NH ₃ BH ₂ OOCCH ₂ Cl C ₁₂ H ₂₄ O ₆ (1) 11 Table S4. Bond lengths (Å) and bond angles (\degree) of 2NH ₃ BH ₂ OOCCHCl ₂ C ₁₂ H ₂₄ O ₆ (2) 11 Figure S5. ¹¹ B NMR spectra of the reaction mixture of AB with CH ₃ COOH with different concentration in 14 h ($c_{AB} = 1 \sim 6$ M, the conversion of AB: $\%$)
Table S3. Bond lengths (Å) and bond angles (\degree) of 2NH ₃ BH ₂ OOCCH ₂ Cl C ₁₂ H ₂₄ O ₆ (1) 11 Table S4. Bond lengths (Å) and bond angles (\degree) of 2NH ₃ BH ₂ OOCCHCl ₂ C ₁₂ H ₂₄ O ₆ (2) 11 Figure S5. ¹¹ B NMR spectra of the reaction mixture of AB with CH ₃ COOH with differentconcentration in 14 h ($c_{AB} = 1 \sim 6$ M, the conversion of AB: %)
Table S3. Bond lengths (Å) and bond angles (\degree) of 2NH ₃ BH ₂ OOCCH ₂ Cl C ₁₂ H ₂₄ O ₆ (1) 11 Table S4. Bond lengths (Å) and bond angles (\degree) of 2NH ₃ BH ₂ OOCCHCl ₂ C ₁₂ H ₂₄ O ₆ (2) 11 Figure S5. ¹¹ B NMR spectra of the reaction mixture of AB with CH ₃ COOH with differentconcentration in 14 h ($c_{AB} = 1 \sim 6$ M, the conversion of AB: %)
Table S3. Bond lengths (Å) and bond angles (\degree) of 2NH ₃ BH ₂ OOCCH ₂ Cl C ₁₂ H ₂₄ O ₆ (1) 11 Table S4. Bond lengths (Å) and bond angles (\degree) of 2NH ₃ BH ₂ OOCCHCl ₂ C ₁₂ H ₂₄ O ₆ (2) 11 Figure S5. ¹¹ B NMR spectra of the reaction mixture of AB with CH ₃ COOH with different concentration in 14 h ($c_{AB} = 1 \sim 6$ M, the conversion of AB: %)
Table S3. Bond lengths (Å) and bond angles (\degree) of 2NH ₃ BH ₂ OOCCH ₂ Cl C ₁₂ H ₂₄ O ₆ (1) 11 Table S4. Bond lengths (Å) and bond angles (\degree) of 2NH ₃ BH ₂ OOCCHCl ₂ C ₁₂ H ₂₄ O ₆ (2) 11 Figure S5. ¹¹ B NMR spectra of the reaction mixture of AB with CH ₃ COOH with differentconcentration in 14 h ($c_{AB} = 1 \sim 6$ M, the conversion of AB: $\%$)
Table S3. Bond lengths (Å) and bond angles (\degree of 2NH ₃ BH ₂ OOCCH ₂ Cl C ₁₂ H ₂₄ O ₆ (1) 11Table S4. Bond lengths (Å) and bond angles (\degree of 2NH ₃ BH ₂ OOCCHCl ₂ C ₁₂ H ₂₄ O ₆ (2) 11Figure S5. ¹¹ B NMR spectra of the reaction mixture of AB with CH ₃ COOH with differentconcentration in 14 h ($c_{AB} = 1 \sim 6$ M, the conversion of AB: $\%$)
Table S3. Bond lengths (Å) and bond angles (\degree of 2NH ₃ BH ₂ OOCCH ₂ Cl C ₁₂ H ₂₄ O ₆ (1) 11Table S4. Bond lengths (Å) and bond angles (\degree of 2NH ₃ BH ₂ OOCCHCl ₂ C ₁₂ H ₂₄ O ₆ (2) 11Figure S5. ¹¹ B NMR spectra of the reaction mixture of AB with CH ₃ COOH with differentconcentration in 14 h ($c_{AB} = 1 \sim 6$ M, the conversion of AB: $\%$)
Table S3. Bond lengths (Å) and bond angles (\degree of 2NH ₃ BH ₂ OOCCH ₂ Cl C ₁₂ H ₂₄ O ₆ (1) 11 Table S4. Bond lengths (Å) and bond angles (\degree of 2NH ₃ BH ₂ OOCCHCl ₂ C ₁₂ H ₂₄ O ₆ (2) 11 Figure S5. ¹¹ B NMR spectra of the reaction mixture of AB with CH ₃ COOH with different concentration in 14 h ($c_{AB} = 1 \sim 6$ M, the conversion of AB: %)

Figure S10. Energy profile of the decomposition of AB to produce hydrogen and NH ₂ BH ₂ .16
Table S5. The relative energies $\{\Delta(E+ZPE)/(kJ\cdot mol^{-1})\}$, enthalpies $\{\Delta H (298 \text{ K})/(kJ\cdot mol^{-1})\}$,
free energy changes { ΔG (298 K)/(kJ·mol ⁻¹)} and entropy {S (298 K)(J·mol ⁻¹)} for the
reactions of AB with CH ₃ COOH16
Table S6. The relative energies $\{\Delta(E + ZPE)/(kJ \cdot mol^{-1})\}$, enthalpies $\{\Delta H (298 \text{ K})/(kJ \cdot mol^{-1})\}$,
free energy changes { ΔG (298 K)/(kJ·mol ⁻¹)} and entropy {S (298 K)(J·mol ⁻¹)} for the
reactions of AB with CH ₂ ClCOOH16
Table S7. The relative energies $\{\Delta(E + ZPE)/(kJ \cdot mol^{-1})\}$, enthalpies $\{\Delta H (298 \text{ K})/(kJ \cdot mol^{-1})\}$,
free energy changes { $\Delta G (298 \text{ K})/(kJ \cdot mol^{-1})$ } and entropy {S (298 K)(J \cdot mol^{-1})} for the
reactions of AB with CHCl ₂ COOH17
Table S8. The relative energies $\{\Delta(E + ZPE)/(kJ \cdot mol^{-1})\}$, enthalpies $\{\Delta H (298)\}$
K)/(kJ·mol-1)}, free energy changes { ΔG (298 K)/(kJ·mol ⁻¹)} and entropy {S (298 K)
(J·mol-1)} for the reactions of AB with CCl ₃ COOH17
Table S9. The relative energies $\{\Delta(E + ZPE)/(kJ \cdot mol^{-1})\}$, enthalpies $\{\Delta H (298 \text{ K})/(kJ \cdot mol^{-1})\}$,
free energy changes { ΔG (298 K)/(kJ·mol ⁻¹)} and entropy {S (298 K) (J·mol ⁻¹)} for the
reactions of AB release hydrogen without catalyst
Table S10. The total rate constants for the reactions of AB with acids. 18
Figure S11a. The optimized geometry constructions of the reactions for AB, AB with acetic
acid and AB with CH ₂ ClCOOH19
Figure S11b. The optimized geometry constructions of the reactions for AB with
CHCl ₂ COOH and AB with CCl ₃ COOH
2. The optimized cartesian coordinates of all species

1. Supporting Results

Figure S1a. ¹¹B NMR spectrum of NH₃BH₂OOCCH₃ in CD₃CN.

Figure S1b. ¹H NMR spectrum of the product H₂ in *d*₈-Toluene.

Figure S2a. ¹¹B NMR spectrum of $2NH_3BH_2OOCCH_2Cl C_{12}H_{24}O_6$ (1) in CD₃CN.

Figure S2b. ¹H NMR spectrum of 2NH₃BH₂OOCCH₂Cl C₁₂H₂₄O₆ (1) in CD₃CN.

Figure S2c. ¹³C NMR spectrum of 2NH₃BH₂OOCCH₂Cl C₁₂H₂₄O₆ (1) in CD₃CN.

Figure S2d. FTIR spectrum of $2NH_3BH_2OOCCH_2Cl C_{12}H_{24}O_6$ (1).

Figure S3a. ¹¹B NMR spectrum of 2NH₃BH₂OOCCHCl₂ C₁₂H₂₄O₆ (2) in CD₃CN.

Figure S3b. ¹H NMR spectrum of 2NH₃BH₂OOCCHCl₂ C₁₂H₂₄O₆ (2) in CD₃CN.

Figure S3c. ¹³C NMR spectrum of 2NH₃BH₂OOCCHCl₂ C₁₂H₂₄O₆ (2) in CD₃CN.

Figure S3d. FTIR spectrum of 2NH₃BH₂OOCCHCl₂ C₁₂H₂₄O₆ (2).

Figure S4. ¹¹B NMR spectrum of NH₃BH₂OOCCCl₃ in CD₃CN.

Table S1. The chemical shifts of B in the ammonia B-monoacyloxy boranes.

Ammonia B-monoacyloxy	δ (BH ₂), ppm
boranes	
NH ₃ BH ₂ OOCCH ₃	-6.5
NH ₃ BH ₂ OOCCH ₂ Cl	-5.7
NH ₃ BH ₂ OOCCHCl ₂	-5.5
NH ₃ BH ₂ OOCCCl ₃	-4.8

Complexes	2NH3BH2OOCCH2Cl C12H24	2NH3BH2OOCCHCl2 C12H24O6
	O_6	
Chemical formula	C ₈ H ₁₉ BClNO ₅	$C_8H_{18}BCl_2NO_5$
Fw (g/mol)	255.50	289.94
T (K)	103.0 (2)	153.0 (2)
Wavelength (Å)	0.71073	0.71073
cryst syst	Monoclinic	Monoclinic
Space group	$P2_1/n$	$P2_1/n$
a, (Å)	10.312 (2)	8.616 (1)
b, (Å)	12.187 (2)	11.914 (2)
c, (Å)	10.604 (2)	13.693 (2)
α, (deg)	90	90
β, (deg)	100.686(6)	99.807(3)
γ, (deg)	90	90
V, (Å ³)	1309.6(4)	1385.1(3)
Z	4	4
D calc, (g/cm^3)	1.296	1.390
$\mu \text{ (mm}^{-1})$	0.296	0.476
F(000)	544.0	608.0
2θ range, (deg)	6.06-62.16	5.90-55.00
reflns collected	21063	13711
indep reflns/R _{int}	4181/0.1584	3186/0.0703
Data/restraints/parameters	4181/0/145	3186/694/313
GOF on F^2	0.983	0.907
Coverage of independent	99.1%	99.9%
reflections		
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
$R_{1}, wR_{2} [I > 2\sigma(I)]^{[a]}$	0.0842, 0.1926	0.0557, 0.1271
R_1, wR_2 (all data) ^[a]	0.1320, 0.2281	0.1074, 0.1465
Largest diff. peak/hole (eÅ-3)	0.69/-0.64	0.467/-0.467

Table S2. Crystallographic data for $2NH_3BH_2OOCCH_2Cl C_{12}H_{24}O_6$ (1) and $2NH_3BH_2OOCCHCl_2 C_{12}H_{24}O_6$ (2).

Bond lengths (Å)		Bond angles ()	Bond angles ()		
B(1)-N(1)	1.581(3)	O(1)-B(1)-N(1)	102.66(5)		
B(1)-O(1)	1.505(3)	C(1)-C(2)-Cl(1)	117.5(2)		
C(1)-C(2)	1.505(4)	O(2)-C(1)-O(1)	125.5(3)		
C(2)-Cl(1)	1.779(3)	O(2)-C(1)-C(2)	116.9(2)		
C(2)-O(1)	1.303(3)	O(1)-C(1)-C(2)	117.5(2)		
C(1)-O(2)	1.217(3)	C(1)-O(1)-B(1)	118.1(2)		

Table S3. Bond lengths (Å) and bond angles (\degree) of $2NH_3BH_2OOCCH_2Cl C_{12}H_{24}O_6(1)$.

Table S4. Bond lengths (Å) and bond angles (\degree) of $2NH_3BH_2OOCCHCl_2 C_{12}H_{24}O_6$ (2).

Bond lengths (Å))	Bond angles ()	Bond angles ()		
B(1)-N(1)	1.590(7)	O(1)-B(1)-N(1)	109.1(5)		
B(1)-O(1)	1.513(7)	C(1)-C(2)-Cl(2)	109.0(6)		
C(1)-C(2)	1.536(9)	C(1)-C(2)-Cl(1)	110.1(5)		
C(2)-Cl(2)	1.724(7)	Cl(2)-C(2)-Cl(1)	113.2(4)		
C(2)-Cl(1)	1.750(7)	O(2)-C(1)-O(1)	126.9(7)		
C(1)-O(2)	1.205(9)	O(2)-C(1)-C(2)	123.6(7)		
C(1)-O(1)	1.304(8)	O(1)-C(1)-C(2)	109.5(7)		
		C(1)-O(1)-B(1)	120.2(5)		

Figure S5. ¹¹B NMR spectra of the reaction mixture of AB with CH₃COOH with different concentration in 14 h ($c_{AB} = 1 \sim 6$ M, the conversion of AB: %).

Figure S6. ¹¹B NMR spectra of the reaction mixture of AB with CCl₃COOH at a ratio of 1:1 ($c_{AB} = 0.13 \sim 0.75$ M, the conversion of AB: %).

Figure S7. ¹¹B NMR spectrum of the reaction mixture of AB with excess ClCH₂COOH over a period of 10 d.

Figure S8. ¹¹B NMR spectra of the reaction of AB with CH₃COOH at 70 °C (n_{AB} : n_{acid} to 1:1, $c_{AB} = 3$ M).

Figure S9a. Energy profile of the reaction of AB with CH₃COOH.

Figure S9b. Energy profile of the reaction of AB with CH₂ClCOOH.

Figure S9c. Energy profile of the reaction of AB with CHCl₂COOH.

Figure S10. Energy profile of the decomposition of AB to produce hydrogen and NH₂BH₂.

Table S5. The relative energies $\{\Delta(E+ZPE)/(kJ\cdot mol^{-1})\}\$, enthalpies $\{\Delta H (298 \text{ K})/(kJ\cdot mol^{-1})\}\$, free energy changes $\{\Delta G (298 \text{ K})/(kJ\cdot mol^{-1})\}\$ and entropy $\{S (298 \text{ K})(J\cdot mol^{-1})\}\$ for the reactions of AB with CH₃COOH.

Species	ΔE	$\Delta(E + ZPE)$	ΔH	ΔG	S
AB + CH ₃ COOH	0.0	0.0	0.0	0.0	538.1
RCA	-32.2	-25.9	-26.4	17.2	392.5
TS_{A1}	92.5	78.2	75.3	124.3	374.5
$IM_A + H_2$	27.2	2.1	10.0	13.0	527.6
TS_{A2}	127.2	92.5	96.2	111.3	487.0
Product	-36.8	-54.8	-50.2	-36.4	491.6

Table S6. The relative energies $\{\Delta(E + ZPE)/(kJ \cdot mol^{-1})\}$, enthalpies $\{\Delta H (298 \text{ K})/(kJ \cdot mol^{-1})\}$, free energy changes $\{\Delta G (298 \text{ K})/(kJ \cdot mol^{-1})\}$ and entropy $\{S (298 \text{ K})(J \cdot mol^{-1})\}$ for the reactions of AB with CH₂ClCOOH.

Species	ΔE	$\Delta(E + \mathbf{ZPE})$	ΔH	ΔG	S
$AB + CH_2ClCOOH$	0.0	0.0	0.0	0.0	545.2
RC _B	-32.6	-26.8	-24.7	10.9	425.9
TS_{B1}	78.7	64.4	64.0	107.1	400.4
$IM_{B}+H_{2} \\$	23.4	-2.5	8.0	4.6	556.1
TS_{B2}	119.2	83.7	90.8	98.3	519.7
Product	-61.9	-79.1	-72.8	-62.3	510.4

Species	ΔE	$\Delta(E + ZPE)$	ΔH	ΔG	S
$AB + CHCl_2COOH$	0.0	0.0	0.0	0.0	595.8
RC_C	-33.5	-27.2	-27.2	16.7	448.1
TS_{C1}	70.7	56.5	54.0	102.9	431.8
$IM_{C} + H_{2}$	23.4	-2.1	5.9	9.2	585.3
TS_{C2}	108.0	72.0	77.4	90.0	554.0
Product	-66.5	-83.3	-79.1	-62.8	541.0

Table S7. The relative energies $\{\Delta(E + ZPE)/(kJ \cdot mol^{-1})\}$, enthalpies $\{\Delta H (298 \text{ K})/(kJ \cdot mol^{-1})\}$, free energy changes $\{\Delta G (298 \text{ K})/(kJ \cdot mol^{-1})\}$ and entropy $\{S (298 \text{ K})(J \cdot mol^{-1})\}$ for the reactions of AB with CHCl₂COOH.

Table S8. The relative energies $\{\Delta(E + ZPE)/(kJ \cdot mol^{-1})\}$, enthalpies $\{\Delta H (298 \text{ K})/(kJ \cdot mol^{-1})\}$, free energy changes $\{\Delta G (298 \text{ K})/(kJ \cdot mol^{-1})\}$ and entropy $\{S (298 \text{ K}) (J \cdot mol^{-1})\}$ for the reactions of AB with CCl₃COOH.

Species	ΔE	$\Delta(E + ZPE)$	ΔH	ΔG	S
AB + CCl ₃ COOH	0.0	0.0	0.0	0.0	619.2
RC _D	-34.3	-28.5	-28.5	14.6	474.0
TS_{D1}	64.0	49.4	47.3	94.6	459.8
$IM_D + H_2 \\$	23.4	-3.4	5.4	5.4	618.0
TS_{D2}	99.6	63.6	69.0	80.3	580.7
Product	-69.5	-86.6	-82.0	-66.5	567.4

Table S9. The relative energies $\{\Delta(E + ZPE)/(kJ \cdot mol^{-1})\}$, enthalpies $\{\Delta H (298 \text{ K})/(kJ \cdot mol^{-1})\}$, free energy changes $\{\Delta G (298 \text{ K})/(kJ \cdot mol^{-1})\}$ and entropy $\{S (298 \text{ K}) (J \cdot mol^{-1})\}$ for the reactions of AB release hydrogen without catalyst.

Species	ΔE	$\Delta(E + ZPE)$	ΔH	ΔG	S
AB	0.0	0.0	0.0	0.0	248.5
TS	192.5	175.3	174.9	175.7	245.2
$NH_2BH_2 + H_2$	41.4	10.5	17.6	-15.1	358.6

T/K*k*_r k_1 *k*3 *k*4 k_2 258 1.95E-20 8.70E-31 2.94E-27 1.54E-26 6.03E-25 278 1.02E-18 1.09E-29 2.55E-26 9.65E-26 3.05E-24 298 4.79E-17 1.00E-28 1.70E-25 4.83E-25 1.27E-23 318 1.84E-15 7.08E-28 9.09E-25 2.01E-24 4.47E-23 338 5.52E-14 4.02E-27 4.06E-24 7.16E-24 1.38E-22 358 1.26E-12 1.91E-26 1.56E-23 2.24E-23 3.79E-22 378 2.22E-11 7.75E-26 5.26E-23 6.29E-23 9.46E-22 398 3.05E-10 2.76E-25 1.59E-22 1.61E-22 2.18E-21

Table S10. The total rate constants for the reactions of AB with acids.

The *r* is the decomposition of AB into AoB and H₂, and the 1-4 are the reactions of AB react with CH₃COOH, CH₂ClCOOH, CHCl₂COOH and CCl₃COOH, respectively.

Figure S11a. The optimized geometry constructions of the reactions for AB, AB with acetic acid and AB with $CH_2CICOOH$.

Figure S11b. The optimized geometry constructions of the reactions for AB with CHCl₂COOH and AB with CCl₃COOH.

2. The optimized cartesian coordinates of all species

Ammonia Borane

TS

Н

Н

0.00000000

0.00000000

-1.04237500

1.04237500

CH₃COOH

Ν	0.72745900	0.00001600	0.00000000	С	-0.08853400	0.12698900	-0.00000500
Н	1.09314700	-0.73111300	-0.60538100	0	-0.62190700	1.20624200	-0.00000100
Н	1.09313000	-0.15863800	0.93587600	0	-0.79628700	-1.03164100	-0.00000700
В	-0.92948300	0.00009900	0.00016500	Н	-1.73486500	-0.78603300	0.00005200
Н	-1.24146900	0.89752800	0.74500600	С	1.39216500	-0.12774300	-0.00000200
Н	-1.24116700	-1.09462100	0.40439100	Н	1.66707300	-0.71260100	0.87978300
Н	1.09300100	0.88978400	-0.33066000	Н	1.66702700	-0.71310300	-0.87946400
Н	-1.24144000	0.19645100	-1.15006000	Н	1.92453300	0.81945000	-0.00026600

RC1

N	0.76209200	0.00000000 0	.01356800	Ν	2.68138300	-0.78397500	0.10922600
Н	1.26116400	0.83823000	-0.24032500	Н	1.73157100	-1.12874800	-0.03357400
Н	1.26116400	-0.83823000	-0.24032600	Н	2.95418200	-1.00655000	1.06361000
В	-0.81291400	0.00000000	-0.15199500	В	2.75987200	0.83795100	-0.17438200
Н	-1.26869200	-1.03187000	-0.53981700	Н	3.88809600	1.17018300	0.08602300
Н	-1.26869200	1.03187000	-0.53981600	Н	1.95409600	1.33679400	0.58637500
Н	-0.13228800	0.00000000	1.05476100	Н	3.30298300	-1.28965000	-0.51693600
Н	-1.12273100	0.00000000	1.17052200	Н	2.46512400	0.97681400	-1.33530500
				С	-1.55343500	0.19222000	0.02000500
NH ₂ B	H_2			0	-1.94386200	1.32639200	0.09358700
N	0.00000000	0.00000000	0.61065500	0	-0.23372500	-0.12923400	0.03787200
Н	0.00000000	0.84353800	1.16284600	Н	0.29703900	0.69266200	0.10351500
Н	0.00000000	-0.84353800	1.16284600	С	-2.42272900	-1.02975300	-0.10227200
В	0.00000000	0.00000000	-0.77775100	Н	-2.20523800	-1.54613700	-1.03958000

-1.35576100 H -2.21083000 -1.72411200 -1.35576100 H -3.46838300 -0.73525100 0.71300800

-0.07788300

TS1-1				Н	-3.20565300	0.78551800	0.29329700
N	-2.01671600	-0.78732300	0.01456500	Н	-3.06657100	-0.64595600	-0.76721100
Н	-0.65027100	-0.94633200	-0.05594100	Н	-2.87693100	-0.83239600	0.97131900
Н	-2.44975200	-1.26564200	-0.76978600				
В	-2.41464200	0.69436900	0.11322100	TS1-2	2		
Н	-3.39657700	1.02419700	-0.49288100	Ν	2.31230500	-0.37445500	0.15100800
Н	-1.64260000	1.42640700	-0.72822100	Н	1.09813500	-0.74144000	-0.36750800
Н	-2.30287400	-1.28600900	0.85152100	Н	3.10640100	-0.41364500	-0.47520800
Н	-2.30817300	1.14565100	1.21370400	В	1.46954200	0.91503400	0.15500700
С	1.12027300	0.05749900	-0.02427400	Н	1.78389500	1.74571100	-0.63802300
0	0.49138500	-1.06805000	-0.08232000	Н	2.55746200	-0.77574300	1.04712600
0	0.56539900	1.17230000	-0.03963900	Н	1.06996400	1.25253300	1.22821700
Н	-0.91101000	1.26396400	-0.30158300	С	-1.03883200	-0.26316600	-0.07168100
С	2.61966200	-0.04160500	0.07248600	0	0.20315900	-0.01037900	-0.58539200
Н	3.07044800	0.94737900	0.05136700	0	-1.39773700	-1.38612100	0.15679300
Н	2.88669900	-0.55094900	1.00073500	С	-1.86493200	0.97732000	0.12226600
Н	3.00045100	-0.64860400	-0.75057500	Н	-2.85342100	0.70637100	0.48425100
				Н	-1.37271700	1.64026600	0.83658100
IM1				Н	-1.94436100	1.51904200	-0.82225500
N	2.25236600	0.34993000	-0.39747200				
Н	0.41929300	-0.82663600	-0.29692400	Produ	ıct1		
Н	2.45821900	0.36961800	-1.38591100	Ν	2.57372300	-0.23754100	0.00031800
В	3.06260200	-0.32029100	0.51741200	Н	2.59194100	-0.83992200	0.82198000
Н	3.96946100	-0.97970900	0.11369300	Н	2.59273900	-0.84001000	-0.82125200
Н	1.50746800	0.98589900	-0.13231500	В	1.20619900	0.66505700	-0.00021500
Н	2.80904100	-0.23679700	1.67853100	Н	1.24822200	1.32264900	-1.01365000
С	-1.21392600	0.08746300	0.00314800	Н	3.40921900	0.34274600	0.00067500
0	-0.53125400	-1.04903800	-0.23675000	Н	1.24741000	1.32244100	1.01337800
0	-0.67732200	1.16821400	0.09936300	С	-1.12698300	-0.25498000	0.00004500
С	-2.69028900	-0.15763100	0.13349500	0 22	0.20148800	-0.40698800	-0.00070200

0	-1.85588800	-1.21885900	0.00019200	Н	-1.79508100	1.20859800	1.19797100
С	-1.64285200	1.16737100	0.00014200	Н	-1.86953400	1.64184600	-0.51344800
Н	-2.72981000	1.15637600	-0.00007900	Cl	-2.93588800	-0.42838400	-0.07139600
Н	-1.27650400	1.70259800	0.87911700				
Н	-1.27606600	1.70306200	-0.87836300	TS2- 1	L		
				N	-3.04958800	-0.47787600	0.01949600
CH ₂ C	СІСООН			Н	-1.79763000	-0.91035000	-0.04256800
С	-1.04471400	-0.06543500	0.00035600	Н	-3.56916900	-0.85509100	-0.76797100
0	-2.10561900	-0.63491400	-0.00869500	В	-3.13662600	1.05336500	0.12750700
0	-0.90992900	1.26709400	0.00521400	Н	-4.03697100	1.58103900	-0.46115900
Н	-1.80579800	1.64144000	-0.00025800	Н	-2.27513800	1.62439400	-0.77550400
С	0.25126600	-0.84951300	0.01034700	Н	-3.43726100	-0.90692500	0.85496600
Н	0.25762300	-1.47205300	0.90246700	Н	-2.90888900	1.47496200	1.21834300
Н	0.25566900	-1.49782600	-0.86298300	С	0.17788800	-0.32007100	-0.03543200
Cl	1.77515100	0.10357000	-0.00444700	0	-0.67373000	-1.28948400	-0.07042200
				0	-0.09638000	0.88115100	-0.05924000
RC2				Н	-1.63775500	1.34002000	-0.31511500
Ν	3.41598700	0.45999000	-0.10153800	С	1.60843100	-0.82873800	0.04901500
Н	2.51092500	0.94981900	-0.08230200	Н	1.72868900	-1.38762700	0.97498900
Н	3.85944800	0.64219100	-0.99844100	Н	1.79687900	-1.50024400	-0.78564200
В	3.16998800	-1.13300800	0.13890900	Cl	2.85943800	0.45750900	0.01655600
Н	4.22655500	-1.69549300	0.01778700				
Н	2.39768300	-1.47732700	-0.74131200	IM2			
Н	4.01296100	0.85292200	0.62161600	N	-3.14198700	-0.52084700	-0.39319700
Н	2.69584600	-1.23651000	1.24483300	Н	-1.56163800	0.86444800	-0.22906000
С	-0.24025900	0.38794900	0.01321000	Н	-3.38589600	-0.45539800	-1.37126500
0	0.62831500	1.24057400	-0.05488800	В	-3.99599800	-0.07458300	0.61704700
0	-0.04019200	-0.90954300	-0.01861500	Н	-4.98334400	0.52033900	0.31738600
Н	0.92681300	-1.11295300	-0.10700800	Н	-2.33420800	-1.11006300	-0.22429200
C	-1.68013200	0.82976900	0.18317000	Н 23	-3.69485900	-0.27415400	1.75169100

С	0.22439900	0.24276900	-0.08214300	Н	2.84938200	0.79133300	1.34925700
0	-0.66150600	1.25046100	-0.17211500	Н	3.16706100	-1.49954700	0.23668100
0	-0.07087700	-0.92301100	-0.09338300	С	0.04960300	-0.13530000	-0.11141200
С	1.62255200	0.81801700	0.03679300	0	1.02550400	-0.98321500	0.13009200
Н	1.81911100	1.46597900	-0.81528300	0	0.18612800	1.03470300	-0.41816000
Н	1.68517100	1.41590500	0.94453400	С	-1.29467600	-0.82791500	0.04393600
Cl	2.89452500	-0.43485500	0.09938300	Н	-1.43851900	-1.50226000	-0.79925600
				Н	-1.30208300	-1.41317300	0.95983100
TS2-	2			Cl	-2.68832400	0.29976300	0.08692800
N	3.19229900	0.16482900	-0.33921800				
Н	2.12281100	0.60975500	0.34734300	CHC	₂ COOH		
Н	3.33799700	0.61057300	-1.23632200	С	1.14646000	-0.32213100	0.07149500
В	2.26361300	-1.04632800	-0.28711700	0	1.35268800	-0.93432400	1.07672800
Н	1.66180100	-1.28271300	-1.28718600	0	2.10371800	0.15305400	-0.75034600
Н	4.06174700	0.11688600	0.17671400	Н	2.96259600	-0.06400200	-0.35300400
Н	2.57196700	-1.92016700	0.45567700	С	-0.22738300	0.06251700	-0.48000300
С	-0.05622700	0.45458800	0.26779200	Н	-0.19082600	0.20967300	-1.55263300
0	1.15371000	0.00880200	0.69302800	Cl	-1.43230100	-1.19810900	-0.13863800
0	-0.25663200	1.58806700	-0.05853600	Cl	-0.68166800	1.64882500	0.24132200
С	-1.07350700	-0.66966200	0.30983000				
Н	-0.73104000	-1.48903600	-0.31978000	RC3			
Н	-1.15887700	-1.03346600	1.33245000	N	-3.57885700	0.42165000	-0.88448500
Cl	-2.70169300	-0.17755900	-0.24708500	Н	-4.04929600	1.31995600	-0.96000900
				Н	-3.91900900	-0.16755800	-1.64056500
Prod	uct2			В	-3.83740200	-0.25661100	0.57424500
N	2.81244400	0.77713600	0.33213300	Н	-5.01064200	-0.50300900	0.66900600
Н	2.05994400	1.40531100	0.02177400	Н	-3.44820100	0.54281600	1.39135100
Н	3.70771400	1.09986500	-0.02545800	Н	-2.57048000	0.56909500	-1.01993200
В	2.43971300	-0.69368700	-0.27381700	Н	-3.18424900	-1.28835800	0.57133100
Н	2.54971600	-0.58162700	-1.46705800	С	-0.14315400	-0.08234700	0.26151200

24

0	-0.67699300	0.44740400	-0.68466000	В	-4.28048900	0.60580000	-0.54565700
0	-0.74679600	-0.74426900	1.23183000	Н	-4.17021600	1.68474100	-0.05559500
Н	-1.72791800	-0.78257100	1.07313700	Н	-4.93539000	0.41241700	-1.52078300
С	1.37101400	-0.08872700	0.48297700	Н	-1.67882600	-0.11589000	-0.65704700
Н	1.61385300	-0.34811800	1.50583400	С	-0.17392500	-0.12715500	0.47743900
Cl	2.07679200	-1.37207600	-0.56145900	0	-0.70234900	-0.03194900	-0.73583600
Cl	2.07368400	1.51270000	0.14297200	0	-0.79268500	-0.29286900	1.50085100
				С	1.34636200	-0.01299000	0.49473700
TS3-1				Н	1.68732200	-0.08846400	1.51917800
N	-3.15730900	0.18827600	-0.95404300	Cl	2.08648300	-1.37136500	-0.41595200
Н	-3.34255700	1.12459500	-1.30268300	Cl	1.87325300	1.58251100	-0.13028600
Н	-3.48976500	-0.45907800	-1.66306800				
В	-3.82559800	-0.01034700	0.41329900	TS3-2	,		
Н	-4.81943100	-0.67729900	0.43455700	Ν	3.33904700	-0.20081500	-0.37967500
Н	-3.83074900	0.95813500	1.10557500	Н	2.23868100	-0.76751900	-0.35069200
Н	-1.85511000	0.10243300	-0.89732300	Н	3.83466400	-0.30149200	0.49851500
Н	-3.20275100	-1.05952000	1.07713000	В	2.43626300	1.00436200	-0.54970700
С	-0.21661700	-0.07938300	0.34695800	Н	2.20130800	1.63314100	0.42384200
0	-0.65597900	0.04809700	-0.84505500	Н	3.91884400	-0.47831100	-1.16266200
0	-0.88941900	-0.23557600	1.37257500	Н	2.28831900	1.41206500	-1.64910200
Н	-2.56504900	-0.54693100	1.17066000	С	0.25716400	-0.62909100	0.58595800
С	1.30477900	-0.03822900	0.52219900	0	0.99945000	-0.44032900	-0.48317800
Н	1.55560900	-0.12707200	1.57099500	0	0.60906500	-1.19991800	1.59447800
Cl	2.06548200	-1.43209100	-0.32075000	С	-1.17543400	-0.08973700	0.50155400
Cl	1.97058700	1.52762300	-0.05096400	Н	-1.68695000	-0.27890700	1.43629900
				Cl	-1.18666000	1.68951700	0.24406100
IM3				Cl	-2.09028200	-0.94834800	-0.78555600
Ν	-3.58330800	-0.46470700	0.02247800				
Н	-3.71575300	-1.41704300	-0.28804800	Produ	ict3		

25

H -3.09141000 -0.40187700 0.90610800 N 3.24741300 -0.38978300 -0.07204700

Н	2.89209300	-0.43697300	0.88956400	Н	-1.88296900	1.24586300	0.20232900
Н	4.22652500	-0.11543100	-0.06586900	Н	-4.45998900	-1.08635700	0.91394000
В	2.34448700	0.72716100	-0.84944700	Н	-5.18392700	1.20423000	-0.02064500
Н	2.58714300	1.77123700	-0.30544000	С	-0.44543900	0.00415600	0.06900900
Н	3.17753400	-1.31549300	-0.49023500	0	-0.88990800	1.23570300	0.14500500
Н	2.61821800	0.67242800	-2.01456300	0	-1.10831600	-1.00522300	0.06242000
С	0.41053800	0.07679800	0.50662500	Н	-3.37671300	1.25782000	0.81086500
0	0.91011500	0.32650000	-0.66459900	С	1.10810000	-0.03303900	-0.00927700
0	1.02897300	-0.06748400	1.55110100	Cl	1.63525600	0.89909800	-1.44895600
С	-1.11024400	-0.08314600	0.53101300	Cl	1.76627900	0.71366100	1.48651400
Н	-1.43758900	-0.22068500	1.55323400	Cl	1.68441800	-1.70936200	-0.14057500
Cl	-1.93492800	1.37377500	-0.10556200				
Cl	-1.58464300	-1.56768300	-0.37284700	TS4- 2	1		
				Ν	-3.59272200	-0.75869000	-0.03754500
CCl ₃ (соон			Н	-2.29395000	-0.86359100	0.05622100
С	1.26219000	0.47181700	-0.00017600	Н	-3.82622200	-1.23167300	-0.90638500
0	1.58313100	1.62242800	-0.00026800	В	-4.07911200	0.69474700	-0.08060000
0	2.10725500	-0.56590600	-0.00018000	Н	-4.00064500	1.21414100	-1.14836300
Н	3.00800000	-0.20500300	-0.00022100	Н	-2.75646900	1.37470500	0.33726300
С	-0.21114600	-0.01715000	-0.00001400	Н	-4.01011100	-1.30217700	0.71282900
Cl	-1.31319400	1.37311700	-0.00025400	Н	-5.05242400	0.95979700	0.56304400
Cl	-0.48582300	-1.00972500	-1.47204600	С	-0.49805600	0.15082300	0.04263500
Cl	-0.48553400	-1.00899100	1.47259000	0	-1.00661100	1.26502900	0.00628700
				0	-1.09980200	-0.97486200	0.11874700
RC4				Н	-3.37110100	1.44168000	0.86891500
Ν	-4.02664200	-0.78887300	0.04309500	С	1.05887400	0.01596700	-0.00461000
Н	-3.05592500	-1.12334000	0.03584100	Cl	1.85283900	1.60553400	-0.10965400
Н	-4.52796000	-1.23870600	-0.71879700	Cl	1.60379300	-0.82067800	1.49291500
В	-4.04466200	0.83315500	-0.11902600	Cl	1.50465800	-0.96590700	-1.44479900
Н	-3.55409500	1.06853000	-1.19657300				

26

IM4				С	0.50741000	0.67266400	0.13881000
N	-4.15616100	-0.59927600	-0.00104500	0	0.65943900	1.82699500	-0.17519600
Н	-2.12781000	-0.57621500	0.00006700	0	1.42263300	-0.12142400	0.63545900
Н	-4.21889500	-1.15324100	-0.84397100	С	-0.88752000	-0.02326900	-0.00239500
В	-4.39769000	0.78407500	0.00152100	Cl	-2.07852600	1.06369900	-0.75346400
Н	-4.48739300	1.34815400	-1.04077600	Cl	-0.71294800	-1.50226800	-1.01469700
Н	-4.21823600	-1.15630100	0.83991400	Cl	-1.45184000	-0.48286500	1.64470700
Н	-4.48617600	1.34445200	1.04593600				
С	-0.45999700	0.31572900	-0.00026100	Produ	ıct4		
0	-0.90382200	1.42706500	-0.00115400	Ν	3.52275200	0.49402300	0.29719500
0	-1.17107000	-0.80800200	0.00059900	Н	3.51316100	0.45935300	1.31491200
С	1.06475800	0.00722300	0.00008000	Н	2.98809500	1.31462800	-0.00755000
Cl	1.99761100	1.51655800	0.00019700	В	2.82317700	-0.81102400	-0.38913900
Cl	1.45965700	-0.94722300	1.47221700	Н	2.97742800	-0.67494600	-1.57269400
Cl	1.45982900	-0.94712900	-1.47217500	Н	4.48855200	0.58122800	-0.00921700
				Н	3.31890900	-1.78877400	0.09292800
TS4-2				С	0.64301000	0.28794400	-0.21936300
Ν	3.70847800	0.34717100	0.18031400	0	1.03211900	1.39716600	-0.52230000
Н	2.61002900	0.44479200	0.69088200	0	1.36776600	-0.76827900	-0.01278500
Н	3.95080900	1.20019200	-0.31148500	С	-0.87468700	0.00391600	0.00781300
В	3.01191400	-0.74438700	-0.60004000	Cl	-1.85000500	1.45100700	-0.33485700
Н	2.59569700	-0.45815800	-1.66796700	Cl	-1.39215500	-1.33533900	-1.06768500
Н	4.43228400	0.07962900	0.83718000	Cl	-1.10315200	-0.47312600	1.73177400
Н	3.15266500	-1.85125800	-0.21247300				