Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Material

Design of a dual-function photocatalyst for cracking water to produce hydrogen and degradation of o-phenylphenol

Meihuan Kang^a, Yichen Li^a, Jin Yan^a, Penghui Shi^{a, b,}*, Yulin Min^{a, b}, Jinchen Fan^{a, b},

Qunjie Xu^{a, b,}*

^a Shanghai Key Laboratory of Materials Protection and Advanced Materials in

Electric Power, Shanghai University of Electric Power, Shanghai 200090, P. R. China

^b Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, P.

R. China.

* Corresponding author. Tel.: +86 18801618059

E-mail addresses: shipenghui@shiep.edu.cn (P. Shi)

Fig. S1. Characterization of the synthesized catalysts. (a) SEM of B-TiO₂. (b-d) EDX spectrum of B-doping TiO₂ catalysts. (e-i) EDX mapping images of the B-doping

TiO₂ catalysts.

Fig. S2. The TEM images of $B-TiO_2$

Fig. S3. XPS survey spectra of the $B-TiO_2$ and $Rh/B-TiO_2-550$.

Atomic %	B-TiO ₂	Rh/B-TiO ₂
Ti	23.10	26.54
0	59.56	62.36
В	4.03	4.76
Rh	0	0.45
С	12.86	5.89

Table S1 XPS analyzes the element composition and content of catalysts

Fig.S4 Comparison of photocatalytic degradation of o-phenylphenol with different Rh

loadings (without filter)

Fig.S5 The active species trapping experiment of degrading o-phenylphenol with

Rh/B-TiO₂ (without filter)