Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

A New ESIPT-Based Fluorescent Probe for the Highly Sensitive

Detection of Amine Vapors

Cheng Bao,^a Sufang Shao,^a Haifeng Zhou,^{a, b} and Yifeng Han*^a

^a Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China. *E-mail: <u>zstuchem@gmail.com</u>* (Yifeng Han); Tel: +86-751-86843550;
^b Hangzhou Xinqiao Biotechnology Co., Ltd., Hangzhou, 311199, China.

Contents

Photophysical properties of HBTAc ·····	··S3
Additional spectroscopic data	···S4
The characterization data of HBTAc	·S13
References	·S15

Photophysical properties of HBTAc

 Table S1 Photophysical properties of the probe.

entry	λab (nm)	λem (nm)	Φ^{a}
HBTAc	321	460	0.001
HBTAc+ammoni	334	460	0.131 ^b
a			

(a) The quantum yield (Φ) of **HBTAc** and **HBTAc**-ammonia system were determined according to the literature.¹ (b) Φ was determined in the present of 10 equiv. of ammonia.

$$\Phi_{Sample} = \frac{\Phi_{QS} \cdot A_{QS} \cdot F_{Sample} \cdot \lambda_{exQS} \cdot \eta_{Sample}^2}{A_{Sample} \cdot F_{QS} \cdot \lambda_{exSample} \cdot \eta_{QS}^2}$$

Where Φ is quantum yield; A is absorbance at the excitation wavelength; F is integrated area under the corrected emission spectra; λ_{ex} is the excitation wavelength; η is the refractive index of the solution; the Sample and QS refer to the sample and the standard, respectively. We chose quinine sulfate in 0.1N H₂SO₄ as standard, which has the quantum yield of 0.546.² Additional spectroscopic data

Fig. S1 Fluorescent intensity of **HBTAc** (10.0 μ M, in aqueous solution) at 460 nm (I₄₆₀) as a function of ammonia concentration (0-20 equiv.) (λ ex = 365 nm).

Fig. S2 Fluorescent intensity of **HBTAc** (10.0 μ M, in aqueous solution) at 460 nm (I₄₆₀) as a function of ammonia concentration (2.0-7.0 equiv.) (λ ex = 365 nm).

Fig. S3. Fluorescent intensity of **HBTAc**-loaded filter paper at 514 nm (I_{514}) after exposure to ammonia vapor (0, 89, 122, 157, 304, 531, 1042, 1968 ppm) for 5 min. (λ ex = 365 nm).

Fig. S4 The changes of the fluorescent intensity of HBTAc at 514 nm (I_{514}) as a function of ammonia vapor concentration (0-300 ppm) under the same condition as the ammonia vapor titration.

The detection limit (DL) of ammonia vapor using **HBTAc** was determined from the following equation: ³

$$DL = 3*\sigma/K$$

Where σ is the standard deviation of the blank solution; K is the slope of the calibration curve.

Fig. S5 Fluorescence spectra of the probe HBTAc-loaded filter paper before and after exposure with various amine vapors generated from their corresponding aqueous solutions (including ammonia, hydrazine, ethylamine, triethylamine, putrescine, histamine, cadaverine, aniline, and 2-methylaniline) ($\lambda ex = 365$ nm).

Fig. S6 The HR-MS (TOF-ESI) experiment of the HBTAc- N_2H_4 system (the HBTAc in the present of 0.3 equiv. of N_2H_4).

Fig. S7 Fluorescent spectra of **HBTAc**-loaded filter paper after exposure to different pomfret samples (pomfret stored for one day at -20 °C and 25 °C, respectively) ($\lambda ex = 365$ nm).

Structures	λ _{ex} /λ _{em} (nm)	LOD	Solution	Gaseous	References
	356/445	6.85 ppm	+	+	Anal. Methods, 2020, 12 , 1744-1751
	372/450	1.01 ng/cm ²	+	+	ACS Appl. Mater. Interfaces, 2018, 10 , 12112-12123
N-C-COOH	360/469	2.61 Pa	-	+	Talanta, 2018, 178 , 522-529
N CN	363/530	-	+	+	Dyes Pigm., 2020, 178 , 108366-108373.
	470/622	10 ng	+	+	J. Am. Chem. Soc., 2020, 142 , 9231-9239
	390/573	421 nM	+	+	ACS Appl. Bio Mater., 2020, 3 , 772-778
NH NH O NH	333/492	-	+	+	ACS Sens., 2016, 1, 179-184
i contra i	580/656	47 nM	+	+	ACS Sustainable Chem. Eng., 2020, 8 , 4457-4463
	375/594	3.67 nM	+	+	Dyes Pigm., 2020, 178 , 108346-108360
	560/640	-	+	+	Anal. Chem., 2019, 91 , 7360- 7365
HO NO	375/409	2.23 μM	+	-	ACS Appl. Polym. Mater., 2019, 1, 1485-1495

Table S2 Summary of some repor	ted amine fluorescent probes.
--------------------------------	-------------------------------

	330/516	12.6 nM	+	-	J. Org. Chem., 2019, 84 , 11513-11523
N COLO	380/448	17 nM	+	-	Analyst, 2016, 141 , 827-831
	372/490	610 ppb	+	+	J. Mater. Chem. C, 2020, 8, 13723-13732
CI CHO	380/475	209 nM	+	+	Dyes Pigm., 2021, 186 , 108963-108970
	440/580	180 nM	+	+	ACS Appl. Mater. Interfaces., 2019, 11, 47207-47217
	365/460 365/514	12.7 ppm	+	+	This work

The characterization data of HBTAc

¹H NMR of 2-(benzo[d]thiazol-2-yl)phenol (HBT)

¹H NMR of 2-(benzo[d]thiazol-2-yl)phenyl acetate (HBTAc)

¹³C NMR of 2-(benzo[d]thiazol-2-yl)phenyl acetate (HBTAc)

HR-MS of 2-(benzo[d]thiazol-2-yl)phenyl acetate (HBTAc)

References

- 1 R. A. Velapoldi, and H. H. Tønnesen, J. Fluoresc., 2004, 14, 465-472.
- 2 (a) D. F. Eaton, Pure Appl. Chem., 1988, 60, 1107-1114; (b) D. Magde, R. Wong, and P. G.
 Seybold, Photochem. Photobiol., 2002, 75, 327-334.
- 3 (a) J. T. Yeh, P. Venkatesan and S. P. Wu, New J. Chem., 2014, 38, 6198-6204. (b) A. Roy, D.
 Kand, T. Saha and P. Talukdar, Chem. Commun., 2014, 50, 5510-5513.