Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Material (ESI) for New Journal of Chemistry

Development of manganese dioxide-based nanoprobe for fluorescent

detection and imaging of glutathione

Ali Qaitoon, Jiaxi Yong, Zexi Zhang, Jie Liu, Zhi Ping Xu, Run Zhang

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia

Email: <u>r.zhang@uq.edu.au</u>; <u>gordonxu@uq.edu.au</u>

Experimental section

Materials

All chemicals were purchased from Sigma-Aldrich if not specially mentioned. Fetal Bovine Serum (FBS), penicillin/streptomycin antibiotics (P/S), and cell culture medium were purchased from Gibco[™] Thermo Fisher Scientific Inc.

MTT assay

Cell viability experiments were conducted by MTT assay in 96-well plates. MnO_2 -PEI-FITC nanoprobes were freshly prepared in DMEM (10% PBS, 1% P/S). Typically, CT26 cells were seeded at the density of 1.0×10^4 and 2.0×10^4 cells per well and incubated overnight at 37°C with 5% CO₂ until around 50% (for 24 h NP treatment) and 70% (for 4 h NP treatment) cell confluence, respectively. Culture medium was then replaced with 100 µL of fresh medium containing the nanoprobes at a series of concentrations (0, 2, 4, 6, 8, 10, 20, 50, and 100 µg/mL). The cell viability was determined after 4 and 24 h incubation respectively, using the standard MTT assay protocol. Typically, culture medium was replaced by 100 µL of MTT solution (0.5 mg/mL in blank DMEM medium) in each well, followed by incubating for another 4 h in a cell incubator at 37°C with 5% CO₂. MTT solution was removed and then 100 µL of DMSO was added to dissolve the MTT formazan for 10 min. The absorbance at 570 nm was measured in a microplate reader (Biotek, Winooski, VT) to estimate the cell viability.

Fig. S1. Absorption (black) spectrum of MnO₂ nanosheet and emission (red) spectrum of FITC.

Fig. S2. Absorption spectra of KMnO₄ and MnO₂ nanosheet.

Fig. S3. FITR spectra of MnO₂, MnO₂-PEI, and MnO₂-PEI-FITC.

Fig. S4. Time-dependent fluorescence response of MnO₂-PEI-FITC to 15 μ M GSH.

Fig. S5. MTT cytotoxicity analysis of MnO₂-PEI-FITC to CT26 colon cancer cells.

Fig. S6. Flow cytometry analyses of yeast cells incubated with MnO₂-PEI-FITC for 0, 2, 6, and 18 h.

Fig. S7. Mean fluorescence intensity (MFI) of free yeast cells incubated by nanoprobe with and without NEM treatment.

Fig. S8. DIC and fluorescence images of onion inner-layer epidermal tissues treated with NEM (5 mM) for 2 h and stained with MnO_2 -PEI-FITC nanoprobe for another 2 h. Scale bars are 100 μ m.

Table S1. Com	parison of the MnO ₂ -PEI-EITC	nanoprobe with other repo	orted probes for GSH detection
		nulloprobe with other repe	

Method	Nanoprobe	λ _{ex} \λ _{em}	Linearity range µM	Limit of detection (µM)	Detection time (min)	Application	Ref.
Colorimetry	Gold nanoparticles (AuNps)	200/700 nm	0.04-0.28	-	20	Human serum	(1)
Colorimetry	CuS-polydopamine-Au	-	0.5-100	0.42	30	Human serum and cellular GSH	(2)
						levels	
Colorimetry	Gold nanoparticles (AuNPs)	-	0.1-1.0	0.02	5	human serum and urine	(3)
Fluorimetry	SiO ₂ Particles	340/430 nm	0.1-10	0.34	20	Dietary supplement	(4)
Fluorimetry	MnO ₂ nanosheet- lanthanide-	NIR 980 nm	-	0.9	180	Cell imaging	(5)
	doped upconversion						
	nanoparticles (UCNPs)						
Fluorimetry	MnO ₂ -Nanosheet-Modified Two-	370/470 nm	0-100	0.2	30	Cell and tissue slices imaging	(6)
	Photon Mesoporous Silica						
	Nanoparticles (TP-MSNs@MnO ₂)						
Fluorimetry	Sr ₂ MgSi ₂ O ₇	-	0-100	0.83	60	Cell and mice imaging	(7)
Fluorimetry	AgNP/DNA/TPdye	450/550 nm	1-10	0.3	60	Cell and tissue slices imaging	(8)
Fluorimetry	AuNC@BSA/MnO ₂ nanosheets	365/430 nm	0-500	0.02	-	-	(9)
Fluorimetry	Lucigenin-MnO ₂ nanosheets	370/500 nm	1-150	0.15	5	Human serum plasma	(10)
Fluorimetry	N-doped graphene quantum dots	310/430 nm	0-400	0.000027	8	Human serum	(11)
	(NGQDs)–MnO ₂ nanocomposite						
Fluorimetry	Endoplasmic reticulum (ER)-	470/500 nm	75-300	0.023	8	Cell imaging	(12)
	targeting fluorescent probe						
Fluorimetry	MnO ₂ -PEI-FITC	490/518 nm	0-80	0.164	12	Yeast cells and Onion tissue	This
							work

References

1. Chen Z, Wang Z, Chen J, Wang S, Huang X. Sensitive and selective detection of glutathione based on resonance light scattering using sensitive gold nanoparticles as colorimetric probes. Analyst. 2012, 137, 3132-7.

2. Wang Y, Liu Y, Ding F, Zhu X, Yang L, Zou P, et al. Colorimetric determination of glutathione in human serum and cell lines by exploiting the peroxidase-like activity of CuS-polydopamine-Au composite. Analytical and Bioanalytical Chemistry. 2018, 410, 4805-13.

3. Li J-F, Huang P-C, Wu F-Y. Specific pH effect for selective colorimetric assay of glutathione using anti-aggregation of label-free gold nanoparticles. RSC advances. 2017, 7, 13426-32.

4. Nedeljko P, Turel M, Lobnik A. Turn-on fluorescence detection of glutathione based on ophthaldialdehyde-assisted SiO₂ particles. Journal of Sensors. 2018, 1692702.

5. Deng R, Xie X, Vendrell M, Chang Y-T, Liu X. Intracellular Glutathione Detection Using MnO₂-Nanosheet-Modified Upconversion Nanoparticles. Journal of the American Chemical Society. 2011, 133, 20168-71.

6. Meng H-M, Jin Z, Lv Y, Yang C, Zhang X-B, Tan W, et al. Activatable Two-Photon Fluorescence Nanoprobe for Bioimaging of Glutathione in Living Cells and Tissues. Analytical Chemistry. 2014, 86, 12321-6.

7. Li N, Diao W, Han Y, Pan W, Zhang T, Tang B. MnO₂-modified persistent luminescence nanoparticles for detection and imaging of glutathione in living cells and in vivo. Chemistry–A European Journal. 2014, 20, 16488-91.

8. Tang Q, Wang N, Zhou F, Deng T, Zhang S, Li J, et al. A novel AgNP/DNA/TPdye conjugate-based two-photon nanoprobe for GSH imaging in cell apoptosis of cancer tissue. Chemical Communications. 2015, 51, 16810-2.

9. Lin S, Cheng H, Ouyang Q, Wei H. Deciphering the quenching mechanism of 2D MnO₂ nanosheets towards Au nanocluster fluorescence to design effective glutathione biosensors. Analytical Methods. 2016, 8, 3935-40.

10. Halawa MI, Wu F, Zafar MN, Mostafa IM, Abdussalam A, Han S, et al. Turn-on fluorescent glutathione detection based on lucigenin and MnO₂ nanosheets. Journal of Materials Chemistry B. 2020, 8, 3542-9.

11. Li Z-M, Pi T, Sheng Y-P, Zheng X-J. Fluorescence Detection of Glutathione Using N-Doped Graphene Quantum Dots–MnO₂ Nanoarchitecture. Journal of Applied Spectroscopy. 2020, 87, 930-7.

12. Jiang C-S, Cheng Z-Q, Ge Y-X, Song J-L, Zhang J, Zhang H. An endoplasmic reticulum-targeting fluorescent probe for the imaging of GSH in living cells. Analytical Methods. 2019, 11, 3736-40.