Supporting Information

Farringtonite as an efficient catalyst for linear chain α -olefins epoxidation with aqueous hydrogen peroxide

Xingyu Yang¹, Xu Li*¹, and Jinxiang Dong*^{1,2}

1 Department of Chemical Product Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology,

Taiyuan 030024, China

- 2 School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- 1.1 An attempt of adding new 30% H₂O₂ to improve 1-octene conversion

According to the almost unchanged trend for 21 to 24 h in 2.2.5, the fresh 30% $\rm H_2O_2$ was added into the 1-octene epoxidation reaction at 21 h. The results are shown in Table S1. The conversion of 1-octene was 85.2% with the epoxide selectivity of 87.6% under optimal conditions. When a new equiv of $\rm H_2O_2$ was added at 21 h, the conversion of 1-octene increased from 85.2% to 90.9% after 24 h with almost constant selectivity. Further attempt of adding two equiv of $\rm H_2O_2$ was carried out. To our delight, a significant improvement in 1-octene conversion was observed, which achieved 95.6% conversion with epoxide selectivity of 87.9% after 24 h of reaction. However, when the equivalent of $\rm H_2O_2$ was increased to 3, a decrease to 92.7% in the conversion was observed compared with that of two equiv of $\rm H_2O_2$, which indicates that an excess of $\rm H_2O_2$ is not effective to improve 1-octene conversion due to the difficulty of phase transfer in the catalytic system.

Table S1 An attempt of adding new 30% H₂O₂ to improve 1-octene conversion

Entry	Conditions		The results on 1-octene epoxidation	
2.101 9	H ₂ O ₂ /1-octene molar ratio (equiv.) ^a	H ₂ O ₂ /1-octene molar ratio (equiv.) ^b	Conversion	Selectivity
			(%)	(%)
1	5	0	85.2	87.6
2	5	1	90.9	87.8
3	5	2	95.6	87.9
4	5	3	92.7	85.9

Reaction condition:

Entry 1: 70 °C, 21h, 1-octene (6.50 mmol), farringtonite (105.00 mg), acetonitrile (5.60 g).

Entry 2,3 and 4: 70 °C, 24 h, 1-octene (6.50 mmol), farringtonite (105.00 mg), acetonitrile (5.60 g).

The conversion was determined by GC and based on 1-octene.

a: Initial amount of H_2O_2

b: Amount of added fresh H_2O_2 at 21h