Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

### **Electronic Supplementary Information**

# Hierarchical porous CeO<sub>2</sub> micro rice supported Ni foam binder free electrode and its enhanced pseudocapacitor performance by redox additive electrolyte

S. Arunpandiyan<sup>a</sup>, A. Raja<sup>b</sup>, S. Vinoth<sup>c,d</sup>, A. Pandikumar<sup>c,d</sup> and A. Arivarasan<sup>a\*</sup>

<sup>a</sup>Multifunctional Materials Laboratory, Department of Physics, International Research Centre, Kalasalingam Academy of Research and Education, Krishnankoil-626126 Tamil Nadu, India

<sup>b</sup>Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea

<sup>c</sup>Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India

<sup>d</sup>Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India

\**Corresponding Author: arivarasan.nanotech@gmail.com (Dr. A. Arivarasan)* 

## **1.** Structural and morphological studies of CeO<sub>2</sub> micro rice after 5000 charge-discharge cycles:

The XRD patterns of the CeO<sub>2</sub> micro rice supported Ni-foam substrate before and after 5000 charge-discharge cycles in KH and RAE were depicted in Fig. S1. The appearance of (111), (200), (220), (311), (222), (400), (331), and (420) planes confirms the formation of CeO<sub>2</sub> structure on Ni foam substrate. Along with these planes, some extra peaks were appeared due to the surface oxidation of Ni foam substrate on hydrothermal reaction. There were no phase changes detected after 5000 cycles of charge-discharge. Compared to the as-prepared binder-free electrode, the peak intensities of the substrates were changed after 5000 charge-discharge cycles in KH and RAE. The peak intensity in RAE was slightly reduced. In KH, there was a large change in peak intensities of CeO<sub>2</sub> peaks and it was in coherence with the experimental results of 5000 GCD cycles, the capacitance drop in KH (85.3%) was high compared to the RAE (92.7%).



Fig. S1 XRD patterns of CeO<sub>2</sub> micro rice supported Ni-foam substrate before and after 5000 charge-discharge cycles



Fig. S2 SEM images of CeO<sub>2</sub> micro rice supported Ni-foam substrate after 5000 chargedischarge cycles in (a,b) KH and (c,d) RAE

The morphological studies of  $CeO_2$  micro rice supported Ni-foam substrate after 5000 charge-discharge cycles in both KH and RAE have been depicted in Fig. S2. The SEM images of  $CeO_2/NF$  in RAE were depicted in Fig. S2 (a,b). This indicates that the surface of the  $CeO_2$  micro rice was looking smooth even after 5000 cycles. Similarly, the SEM images of the  $CeO_2/NF$  in the KH has been depicted in Fig. S2 (c,d) indicates that the surface was slightly rough, due to a large number of cycles and corrosion and workload of the electrode in KH. The SEM report also supports the GCD cycling test results.



#### 2. Effect of precursor concentration on CeO<sub>2</sub> morphology:

Fig. S3 (a-d) SEM images of CeO<sub>2</sub> micro rice synthesized with 30 mM Ce(NO<sub>3</sub>)<sub>2</sub>.6H<sub>2</sub>O under different magnifications

To study the effect of precursor concentration on the surface morphology of the  $CeO_2$  micro rices, the  $CeO_2$  synthesis procedures were repeated under different precursor concentration (30 mM and 70 mM  $Ce(NO_3)_2.6H_2O$ ). The SEM images of the  $CeO_2$  micro rice synthesized by the 30 mM and 70 mM  $Ce(NO_3)_2.6H_2O$  concentrations were depicted in Fig. S3, S4. The Fig. S3 illustrates the SEM images of  $CeO_2$  micro rices synthesized with 30 mM  $Ce(NO_3)_2.6H_2O$  concentration with inhomogeneous size

distribution. At same time, the SEM images of  $CeO_2$  miro rices prepared with the 70 mM  $Ce(NO_3)_2.6H_2O$  concentration (Fig. S4), confirmed the formation of almost even sized micro rices with excessive  $CeO_2$  nanoparticles over it, due to high precursor concentration. But, in both the cases, the surface morphology of the prepared  $CeO_2$  miro rices were almost same. Altogether elucidates that the 50 mM  $Ce(NO_3)_2.6H_2O$  concentration was the optimal concentration for the ideal  $CeO_2$  micro rice structure formation with uniform size distribution to attain the high electrochemical performances.



Fig. S4 (a-d)SEM images of CeO<sub>2</sub> micro rice synthesized with 70 mM Ce(NO<sub>3</sub>)<sub>2</sub>.6H<sub>2</sub>O

### 3. Chargeing-discharging mechanism of RAE/CeO<sub>2</sub>:

The charging and discharging mechanism of RAE and CeO<sub>2</sub> based binder free electrode was illustrated in equations (S1-S4),

Charging,

$$Ce^{3+} - e^{-} \rightarrow Ce^{4+} \tag{S1}$$

$$[Fe(CN)_6]^{3-} + e^- \rightarrow [Fe(CN)_6]^{4-}$$
(S2)

Discharging,

$$[Fe(CN)_6]^{4-} - e^- \rightarrow [Fe(CN)_6]^{3-}$$
(S3)

$$Ce^{4+} + e^{-} \rightarrow Ce^{3+}$$
 (S4)