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S1. Details of rate constant calculations.

The multistructural method with coupled torsional-potential anharmonicity1 (MS-T) was used

for calculating partition functions by the MSTor-2017-B.2 Then, we carried out first-principles

direct dynamics calculations using multistructural canonical variational transition state theory with

small curvature tunneling (MS-CVT/SCT)3 to calculate the high-pressure-limit rate constants of

reaction channels RA1−RA6, RB1−RB6 and RC1−RC4. For the current system which contains

one chiral carbon, we followed the procedures in the previous paper56 for treating chiral centers in

MS-VTST theory.

The CVT rate coefficient at temperature T was computed by

kCVT(T)= min kGT(T, s) (1)
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Herein, s is the location of the generalized transition state on the IRC; σ is the symmetry factor; kB

is Boltzmann’s constant; h is Planck’s constant; κ is the tunneling factor; and QGT and QR are

partition functions for the generalized transition state and reactants, respectively. In the

computations of the electronic partition functions, two electronic states for OH radical, with a 140

cm−1 splitting in the 2Π1/2 and 2Π3/2 ground states, are included. The vibrationally adiabatic

ground-state energy, which is the effective potential for tunneling, is given by

��
� = ���� � + �� � (3)

where s is the reaction coordinate, which is a signed distance from the saddle point along each

curved MEP in isoinertial coordinates, VMEP(s) is the potential energy along the MEP, and εG(s) is

the local zero-point energy.

The MS-VTST rate constants were calculated by3



3

���� ��� = ����
��−��1

��� ��� (4)

where �1
��� ��� is the single-structural canonical variation theory4 (CVT) rate constant SCT

approximation,5,6 which employs the lowest-energy structure (labeled as 1 here) for reactants and

the transition state. ����
��−� is the multistructural torsional anharmonicity factor of the reaction: it

includes the contributions from all the conformational structures of the reactants and the transition

state and is computed by the coupled-potential MS-T method as described elsewhere.7−10 It is

calculated by

����
��−� = ���

��−� ��
��−� (5)

where ��
��−� is the multistructural torsional anharmonicity factor of species X, and it equals the

ratio of the MS-T partition function to the single-structure harmonic one. As in the original

MS-VTST method, ���
��−� was approximated by its value at the conventional transition state. In

the MS-T method, the potential for the torsional coordinate ∅�,� of torsion τ of structure j of a

given species is approximated locally as

��,� = �� + ��,� 1 − cos ��,� ∅�,� − ∅�,�,�� (6)

where �� is the energy of the structure, ∅�,�,�� is the equilibrium value of the torsion angle, ��,�

is the local periodicity, determined by Voronoi tessellation, and ��,� is determined from the

second-order force constants and the local periodicities.1 Effects caused by the deviation of eq. 6

from a harmonic potential are called torsional potential anharmonicity effects; the effect of

including the contributions of all the distinguishable structures of a species (a reactant species or a

transition state) is called multiple-structure anharmonicity. The combination of these two effects is

called multi-structural anharmonicity.
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Figure S1. The geometries of the OH, H2O, and hydrogen abstraction products involving the
initial reactions of 1-pentanol (A), 2-pentanol (B), and 3-pentanol (C) with OH radical at the
M06-2X/6-311+G(d,p) level.
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Figure S2. Plots of C–H (O–H) BDE obtained at the M06-2X/6-311+G(d,p) level versus C–H
(O–H) BDE obtained at the CCSD(T)/CBS//M06-2X/6-311+G(d,p) level.
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Figure S3. Plots of relative free energies (ΔG298.15) versus C–H (O–H) BDE at the
CCSD(T)/CBS//M06-2X/6-311+G(d,p) level.
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Figure S4. Schematic potential energy surfaces for reactions of 1-pentanol (A) + OH (a),
2-pentanol (B) + OH (b), and 3-pentanol (C) + OH (c). The relative energies are calculated at the
CCSD(T)/CBS//M06-2X/6-311+G(d,p) level.
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Figure S5. Schematic free energy surfaces (at 298.15 K) for reactions of 1-pentanol (A) + OH (a),
2-pentanol (B) + OH (b), and 3-pentanol (C) + OH (c). The relative energies are calculated at the
CCSD(T)/CBS//M06-2X/6-311+G(d,p) level.
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Figure S6. CCSD(T)/CBS//M06-2X/6-311+G(d,p)-computed individual and total MS-CVT/SCT
rate constants versus 1000/T together with the experimental data for reactions of RA1–RA6 (a),
RB1–RB6 (b), and RC1–RC6 (c) in the temperature range of 220–2000 K.
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Figure S7. The geometries for the transition states in gaseous phase in the subsequent degradation
of peroxy radicals.
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Figure S8. The geometries for the stationary points in gaseous phase in the subsequent
degradation of peroxy radicals.
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Figure S9. The degradation pathways along with the geometrical configurations of hydroxyalkoxy
radicals A-2, B-2, and C-2.
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Figure S10. The transformation pathways and fate of hydroxyalkoxy radicals A-3 and A-4 in the
presence of O2.
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Figure S11. The transformation pathways and fate of hydroxyalkoxy radicals B-4 and B-5 in the
presence of O2.
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Figure S12. The transformation pathways and fate of hydroxyalkoxy radicals C-3 in the presence
of O2.
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Table S1. The interaction energy (∆Einter) and the total distortion energy (∆Ed) (kcal/mol) for all
hydrogen abstraction transition states at the M06-2X/6-311+G(d,p) level.

Species ∆Ed ∆Einter
TSA1 5.72 -3.90
TSA2 1.35 -1.96
TSA3 2.96 -4.53
TSA4 2.64 -5.51
TSA5 4.72 -6.32
TSA6 2.38 0.52
TSB1 5.14 -4.42
TSB2 1.19 -3.16
TSB3 4.48 -3.55
TSB4 2.85 -4.91
TSB5 2.80 -5.19
TSB6 5.91 -5.68
TSC1 6.04 -4.35
TSC2 1.19 -3.55
TSC3 2.89 -4.55
TSC4 3.96 -4.57
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Table S2. Relative energies (ΔE298.15), standard Enthalpies change (ΔH298.15), and Gibbs free
energy change (ΔG298.15) of reactant complexes and transition states in the reactions of OH radical
with 1-pentanol (A), 2-pentanol (B), and 3-pentanol (C) at the
CCSD(T)/CBS//M06-2X/6-311G(d,p) level.

Species ΔE298.15 ΔH298.15 ΔG298.15

A + OH 0.0 0.0 0.0
ERA1 -4.34 -4.88 3.39
ERA2 -1.87 -2.48 6.34
TSA1 2.06 1.25 9.88
TSA2 -1.38 -2.03 5.88
TSA3 -2.00 -2.95 6.27
TSA4 -3.10 -4.12 5.41
TSA5 -1.56 -2.66 7.29
TSA6 0.75 -0.03 8.50
B + OH 0.0 0.0 0.0
ERB1 -4.21 -4.61 2.97
ERB2 -4.06 -4.56 3.66
ERB3 -0.79 -1.25 7.01
TSB1 1.29 0.52 8.98
TSB2 -2.30 -3.00 5.65
TSB3 0.25 0.74 8.74
TSB4 -2.05 -3.04 6.63
TSB5 -2.93 -3.86 5.41
TSB6 0.09 -1.02 8.78
C + OH 0.0 0.0 0.0
ERC1 -3.68 -4.25 4.02
ERC2 -4.56 -4.89 2.64
ERC3 -6.23 -6.68 0.90
ERC4 -4.06 -4.49 3.35
TSC1 2.15 1.37 10.23
TSC2 -2.30 -3.06 5.81
TSC3 -1.92 -2.83 6.61
TSC4 -0.85 -1.97 7.78



19

Table S3. Calculated MS-CVT/SCT rate constants (cm3 molecule−1 s−1) for reactions of A/B/C +
OH in the temperature range of 220–2000 K at CCSD(T)/CBS//M06-2X/6-311+G(d,p) level.

T (K) kA kB kC
220 3.96E-11 2.82E-11 2.70E-11
230 3.44E-11 2.56E-11 2.47E-11
250 2.72E-11 2.20E-11 2.12E-11
267 2.30E-11 1.98E-11 1.91E-11
273 2.19E-11 1.92E-11 1.84E-11
276 2.14E-11 1.90E-11 1.82E-11
298 1.83E-11 1.74E-11 1.64E-11
313 1.68E-11 1.66E-11 1.55E-11
323 1.60E-11 1.62E-11 1.50E-11
330 1.55E-11 1.60E-11 1.47E-11
348 1.45E-11 1.55E-11 1.40E-11
350 1.44E-11 1.54E-11 1.39E-11
400 1.26E-11 1.49E-11 1.28E-11
500 1.16E-11 1.56E-11 1.31E-11
600 1.24E-11 1.78E-11 1.46E-11
800 1.68E-11 2.49E-11 1.87E-11
1000 2.46E-11 3.56E-11 2.50E-11
1200 3.62E-11 5.01E-11 3.38E-11
1500 6.16E-11 7.94E-11 5.15E-11
1800 9.96E-11 1.19E-10 7.50E-11
2000 1.33E-10 1.51E-10 9.39E-11


