Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

CoO_x/UiO-66 and NiO/UiO-66 Heterostructures with UiO-66 Frameworks for Enhanced Oxygen Evolution Reactions

Victor Charles,^{a,b,#} Yong Yang,^{a,#} Menglei Yuan, ^{a,b} Jitao Zhang,^f Yaling Li,^f Jingxian Zhang,^{a,b} Tongkun Zhao,^{a,b} Zhanjun Liu^c, Bin Li^d*, Guangjin Zhang,^{a,b,e*}

^aCAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China. E-mail: zhanggj@ipe.ac.cn

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China

°CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China

^dZhengzhou Tobacco Research Institute of CNTC, No 2 Fengyang Street, Zhengzhou High-Tech Development District, Henan, China, 450001, E-mail: lib@ztri.com.cn

^eChemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031 China ^fBeijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing, China

[#]Equal contribution

 $M-O+OH^{-} \rightarrow M-OOH + e^{-}$ (3)

 $M-OOH + OH^{-} \rightarrow M + O_{2(g)} + H^{+} + e^{-}$ (4)

Figure S1. (a) Survey spectrum of NiO/UiO-66-300 and (b) XPS spectra of Ni 2p

Figure S2. OER polarization curves of NiO/UiO-66-300, and NiO/UiO-66-550

Figure S3. EIS of NiO/UiO-66-300, and NiO/UiO-66-550

Figur S4. C_{di} of NiO/UiO-66-300, and NiO/UiO-66-550

Catalysts	Mass	Electrolyte	Overpoytential	Reference
	loading		at 10 mA cm ⁻²	S
	(Mg/cm ²)		(mV vs. RHE)	
CoO _x /UiO-66-300	0.3	1 M KOH	283	This work
NiO/UiO-66-300	0.3	1 M KOH	291	This work
2.5Fe-NiCoP/PBA HNCs	0.2	1 M KOH	290	1
RuO ₂ /CeO ₂ heterostructure	0.28	1 M KOH	350	2
Co ₃ O ₄ /Fe ₂ O ₃ nanocubes	3.0	1 M KOH	310	3
Ultrathin Co ₃ O ₄ nanomeshes	~0.34	1 M KOH	307	4
Fe-CoOOH/graphene	0.2	1 M KOH	330	5
$\begin{tabular}{c} MoS_x\mbox{-}\ encapsulated \\ Co(OH)_2 \\ nanosheets \end{tabular}$	0.2	0.1 M KOH	350	6
Co-BPDC/Co-BDC heterostructure	0.28	1 M KOH	335	7
Ni-BDC/Ni(OH) ₂ heterostructure	-	1 M KOH	320	8
Se-(CoFe)S ₂ heterostructure	-	1 M KOH	281	9
Ni-MOF/LDH heterostructure	-	1 M KOH	220	10
Ni ₃ S ₂ -Co ₉ S ₈ heterostructure	-	1 M KOH	294	11
Co ₉ S ₈ /Ni ₃ S ₂ /NF heterostructure	-	1 M KOH	227	12
Ni ₃ S ₂ @Co(OH) ₂ /NF heterostructure	-	1 M KOH	290	13
NCS-0.5/NF heterostructure	-	1 M KOH	340	14
NiO/NiS heterostructure	-	1 M KOH	209	15

Table S1. OER performance comparisons of some recently published heterostructure catalysts

Supplementary References

- 1 D. Li, C. Liu, W. Ma, S. Xu, Y. Lu, W. Wei, J. Zhu and D. Jiang, *Electrochim. Acta*, , DOI:10.1016/j.electacta.2020.137492.
- 2 S. M. Galani, A. Mondal, D. N. Srivastava and A. B. Panda, *Int. J. Hydrogen Energy*, 2020, **45**, 18635–18644.
- 3 X. Wei, Y. Li, H. Peng, D. Gao, Y. Ou, Y. Yang, J. Hu, Y. Zhang and P. Xiao, *Chem. Eng. J.*, 2019, **355**, 336–340.
- 4 Y. Li, F. M. Li, X. Y. Meng, S. N. Li, J. H. Zeng and Y. Chen, *ACS Catal.*, 2018, **8**, 1913–1920.
- 5 X. Han, C. Yu, S. Zhou, C. Zhao, H. Huang, J. Yang, Z. Liu, J. Zhao and J. Qiu, *Adv. Energy Mater.*, DOI:10.1002/aenm.201602148.
- 6 F. Sun, C. Li, B. Li and Y. Lin, J. Mater. Chem. A, 2017, 5, 23103–23114.
- 7 Q. Zha, F. Yuan, G. Qin and Y. Ni, *Inorg. Chem.*, 2020, **59**, 1295–1305.
- 8 D. Zhu, J. Liu, L. Wang, Y. Du, Y. Zheng, K. Davey and S. Z. Qiao, *Nanoscale*, 2019, **11**, 3599–3605.
- 9 Y. Song, X. Zhao and Z. H. Liu, *Electrochim. Acta*, 2021, **374**, 137962.
- 10 W. Da Zhang, Q. T. Hu, L. L. Wang, J. Gao, H. Y. Zhu, X. Yan and Z. G. Gu, *Appl. Catal. B Environ.*, 2021, **286**, 119906.
- 11 R. Zhang, L. Cheng, Z. Wang, F. Kong, Y. Tsegazab, W. Lv and W. Wang, *Appl. Surf. Sci.*, 2020, **526**, 146753.
- 12 F. Du, L. Shi, Y. Zhang, T. Li, J. Wang, G. Wen, A. Alsaedi, T. Hayat, Y. Zhou and Z. Zou, *Appl. Catal. B Environ.*, 2019, **253**, 246–252.
- 13 X. Du, P. Che, Y. Wang, C. Yuan and X. Zhang, *Int. J. Hydrogen Energy*, 2019, 44, 22955–22961.
- 14 J. Lin, H. Wang, X. Zheng, Y. Du, C. Zhao, J. Qi, J. Cao, W. Fei and J. Feng, *J. Power* Sources, 2018, **401**, 329–335.
- 15 N. A. Khan, N. Rashid, M. Junaid, M. N. Zafar, M. Faheem and I. Ahmad, *ACS Appl. Energy Mater.*, 2019, **2**, 3587–3594.