Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Information

Facile synthesis of MgAl layered double hydroxides by co-precipitation method for efficient nitrate removal from water: Kinetics and mechanisms

Zhuwu Jiang^{1,2}, Jiangnan Wu¹, Xinru Liu¹, Hai Yu¹, Chengyuan Jiao¹, Jyunhong Shen¹, Yanyan Pei^{1*}

¹ College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, China
² College of Civil Engineering, Fuzhou University, Fuzhou 350116, China

*Corresponding authors.

E-mail address: peiyanyan715@outlook.com (Y. Pei)

Fifteen Expressions and One Figure Included

(Expression 1-14 and Figure S1)

The calculation expressions related to adsorption is as follows:

$$RE=(C_0-C_t)/C_0 \tag{1}$$

$$Q_t = (C_0 - C_t) V/m \tag{2}$$

$$Q_e = (C_0 - C_e) V/m \tag{3}$$

Where *RE* is removal rate, C_0 is the NO₃⁻ initial concentration (mg·L⁻¹), C_t and C_e are the NO₃⁻ concentration at time t and equilibrium (mg·L⁻¹), *m* is the mass of adsorbent (g), *V* is the volume of the aqueous solution (L), Q_t and Q_e are the adsorption capacity at time t and equilibrium (mg·g⁻¹).

Pseudo-first-order model:

$$Q_t = Q_e(1 - e^{-kt}) \tag{4}$$

Pseudo-second-order model:

$$Q_t = k_2 Q_e^2 t / (1 + k_2 Q_e t)$$
 (5)

Intraparticle diffusion model:

$$Q_t = k_i t^{0.5} + C \tag{6}$$

Where k_1 (min⁻¹), k_2 (g mg⁻¹ min⁻¹), k_i (mg g⁻¹ min^{-1/2}) are the rate constant individually for the corresponding model in the Exp 4-6, C (mg g⁻¹) is the intercept.

Langmuir model:

$$Q_e = Q_m K_L C_e / (1 + K_L C_e) \tag{7}$$

Freundlich model:

$$Q_e = K_F C_e^{\ n} \tag{8}$$

Temkin model:

$$Q_e = b_T \ln(K_T C_e) \tag{9}$$

D-R model:

2

$$Q_e = Q_m e^{\left(-K_{D-R}\varepsilon^2\right)}$$
(10)

$$E = RTln(1+1/C_e)$$
(11)

$$E = 1/(2K_{D-R}^{1/2})$$
(12)

Where C_e is the equilibrium concentration (mg·L⁻¹), Q_m is the maximum adsorption capacity (mg·g⁻¹), K_L is the adsorption equilibrium constant of Langmuir adsorption isotherm mode (L·mg⁻¹), K_F is the empirical constant of Freundlich model (mg·g⁻¹), K_T is the equilibrium binding constant (L·mg⁻¹), b_T is the Temkin constant (J·mol⁻¹), K_{D-R} is the constant of D-R model (mol²·J⁻²), ε is the Polanyi adsorption potential energy (J·mol⁻¹), E is the adsorption free energy (kJ·mol⁻¹).

Van't Hoff equation:

$$\Delta G^{\circ} = -RTln(Q_e/C_e)$$
⁽¹³⁾

Gibbs-Helmholtz equation:

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} \tag{14}$$

Where ΔG° is the free energy change (kJ mol⁻¹), *R* is the universal gas constant (8.314 kJ mol⁻¹ K⁻¹), *T* is the absolute temperature (K), ΔH° is the enthalpy change (kJ mol⁻¹), ΔS° is the entropy change (kJ mol⁻¹ K⁻¹).

Fig. S1. Zeta potential of Mg₅Al-LDH.