Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Materials

Construction of a novel Cu₂(OH)₃F/g-C₃N₄ heterojunction as a high-

activity Fenton-like photocatalyst driven by visible light

Lifen Wang¹, Yinjun Lin¹, Wenting Guo¹, Yuanyuan Yang¹, Ruiqin Zhang², Yunpu Zhai¹ and Yonggang Liu^{1,2*}

¹Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China ²School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan

450001, PR China

*Corresponding authors: ygliu@zzu.edu.cn (Y. G. Liu)

Catalyst	Dosage	Target	C ₀	V	Reaction	Catalytic	Declined	Ref.
	(mg)	pollutant	(mg/L)	(mL)	time(min)	cycles	activity	
Fe ₃ O ₄ /C/Cu ₂ O	20	MB	100	50	60	3	3.2%	1
Cu/Fe ₃ O ₄ @CRC	50	MB	200	50	60	5	5%	2
CuFe ₂ O ₄ /Fe ₂ O ₃	250	MB	50	250	270	4	little	3
CuCr2O4/CeO2	50	RhB	20	60	16	3	7%	4
Cu-C-CN	20	MB	10	50	150	5	little	5
CuO/LaFeO3	15	RhB	6	100	180	5	little	6
BW/BF/g-C ₃ N ₄	10	RhB	10	100	90	4	little	7
LFO-15Cu	100	МО	10	100	60	4	4.4%	8
g-C ₃ N ₄ /NH ₂ -Iron	50	MB	30	50	120	4	little	9
Cu-CNK-OH	20	RhB	10	50	20	5	6.3%	10
Cu ₂ (OH)PO ₄ /g-C ₃ N ₄	20	RhB	10	50	40	5	little	11
ZnFe ₂ O ₄ /g-C ₃ N ₄	25	MB	20	50	60	5	≈5%	12
CuS/g-C ₃ N ₄	40	RhB	30	100	60	3	little	13
Fe-doped g-C ₃ N ₄	20	RhB	10	100	45	5	5.7%	14
Cu ₂ (OH) ₃ F/g-C ₃ N ₄	10	RhB	20	50	25	5	≈1%	Our work

Table S1. Comparison of the degradation of organic pollutants by other copper-based or and CN-based catalysts using photo-assisted Fenton-like effect.

References

- 1. F. Chai, K. Li, C. Song and X. Guo, *J Colloid Interface Sci*, 2016, 475, 119-125.
- 2. V. T. Le, V. D. Doan, V. A. Tran, H. S. Le, D. L. Tran, T. M. Pham, T. H. Tran and H. T. Nguyen, *Materials Research Bulletin*, 2020, **129**.
- E. d. N. Silva, I. L. O. Brasileiro, V. S. Madeira, B. A. de Farias, M. L. A. Ramalho, E. Rodríguez-Aguado and E. Rodríguez-Castellón, *Journal of Environmental Chemical Engineering*, 2020, 8.
- 4. K. Ghorai, A. Panda, M. Bhattacharjee, D. Mandal, A. Hossain, P. Bera, M. M. Seikh and A. Gayen, *Applied Surface Science*, 2021, **536**.
- 5. L. Wang, Y. Zhu, D. Yang, L. Zhao, H. Ding and Z. Wang, *Applied Surface Science*, 2019, **488**, 728-738.
- Y. Soltanabadi, M. Jourshabani and Z. Shariatinia, *Separation and Purification Technology*, 2018, 202, 227-241.
- 7. T. Wang, Y. Bai, W. Si, W. Mao, Y. Gao and S. Liu, Journal of Photochemistry and

Photobiology A: Chemistry, 2021, 404.

- 8. T. T. N. Phan, A. N. Nikoloski, P. A. Bahri and D. Li, *Journal of Industrial and Engineering Chemistry*, 2018, **61**, 53-64.
- 9. X. Li, Y. Pi, L. Wu, Q. Xia, J. Wu, Z. Li and J. Xiao, *Applied Catalysis B: Environmental*, 2017, **202**, 653-663.
- 10. Q. Dong, Y. Chen, L. Wang, S. Ai and H. Ding, *Applied Surface Science*, 2017, **426**, 1133-1140.
- 11. C. Chen, Y. Zhou, N. Wang, L. Cheng and H. Ding, *RSC Advances*, 2015, **5**, 95523-95531.
- B. Palanivel, S. d. Mudisoodum perumal, T. Maiyalagan, V. Jayarman, C. Ayyappan and M. Alagiri, *Applied Surface Science*, 2019, 498.
- 13. Y. Ma, J. Zhang, Y. Wang, Q. Chen, Z. Feng and T. Sun, *J Adv Res*, 2019, **16**, 135-143.
- 14. S. Ji, Y. Yang, Z. Zhou, X. Li and Y. Liu, *Journal of Water Process Engineering*, 2021, 40.

Fig. S1. SEM images of (a)pure $g-C_3N_4$, (b)pure $Cu_2(OH)_3F$. TEM images of (a)pure $g-C_3N_4$, (b)pure $Cu_2(OH)_3F$.

Fig.S2. element mappings of CFO/CN-40

Fig.S3. Transient photocurrent response of the Cu₂(OH)₃F, g-C₃N₄ and CFO/CN-40.

Fig.S4. EIS Nyquist plots of the $Cu_2(OH)_3F$, g-C₃N₄ and CFO/CN-40.